Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

(cosx)(tanx+sinx cotx)=sinx+cos^2x Prove the identity

Precalculus
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
Are you sure it's not (cosx)(tanx+sinx cosx) = sinx + sinx cos²x ?
oh crap, its actually (cosx)(tanx+sinx cotx)=sinx+cos^2x
We know that \(\tan x = \dfrac{\sin x}{\cos x}\) and \(\cot x = \dfrac{\cos x}{\sin x}\) So \((\cos x)(\tan x+\sin x \cot x) = (\cos x)\left(\dfrac{\sin x}{\cos x} + \sin x\cdot\dfrac{\cos x}{\sin x}\right)\) \(=(\cos x)\left(\dfrac{\sin x}{\cos x} + \cos x\right)\) \( = \boxed{\sin x + \cos^2 x}\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\Huge\text{Q.E.D.}\]
Q.E.D. ? Thanks a lot for the help otherwise
http://en.wikipedia.org/wiki/Q.E.D.
wait, how'd you get sinx + cos^2 at the end? shouldn't sinx/cosx cross out the + cosx?
No, because it's just addition. you can't cancel cos x out like that.|dw:1362452530886:dw|
shouldnt that make the end result be tanx cosx + (cosx)^2? how did we get sin from the tan?
\(\tan x = \dfrac{\sin x}{\cos x}\) right? So \(\tan x\cos x\ = \dfrac{\sin x}{\cos x}\cdot \cos x = \sin x\) And cos²x is just another way to write (cos x)²
oh, i get it now. Thanks a lot for all your help!
Glad I helped.

Not the answer you are looking for?

Search for more explanations.

Ask your own question