Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Let \[I_n=\huge\int \frac{x^n}{\sqrt{x^2+a}}\] \[n \in N,a>0,and \space I_n=(a,\infty)\]
Find \[I_0,I_1 ,I_n\]
I did the first two but three i dont understand

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

actually it says show that \[I_n=\frac{1}{n}x^{n-1}\sqrt{x^2+a}-\frac{n-1}{n}aI_{n-2}\]
\[I_0=\ln(x+\sqrt{x^2+a})-\ln\sqrt{a}+c,I_1=\frac{1}{2}\sqrt{x^2+a}+c\]
tried integrating by parts ?
yes\[ f=x^n,f'=nx^{n-1}\] \[g'=\frac{1}{\sqrt{x^2+a}}.g=I_0\] \[I_n=x^n(I_0)-\int I_0nx^{n-1}\]
\[I_0\] is known above
\[I_n=x^n\ln(x+\sqrt{x^2+a})-n\int x^{n-1}\ln(x+\sqrt{x^2+a})\]
using parts twice \[\int(x^{n-1})\ln(x+\sqrt{x^2+a)}\] \[f=x^n-1,f'=(n-1)x^{n-2}\] \[g'=\ln(x+\sqrt{x^2+a)}\] not sure wat to use for g
sry \[f=x^{n-1}\]
let me try lil bit different, \(I_n=\huge\int \frac{x^n}{\sqrt{x^2+a}}dx=\huge\int \frac{x.x^{n-1}}{\sqrt{x^2+a}}dx\) now let f(x) = x^{n-1} , g'(x) =x/(...)
just a thought, donno whether it'll be useful
thanks it works very well,i tried it,just too lazy to post
oh, it works...good to hear :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question