anonymous
  • anonymous
nth integral
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Let \[I_n=\huge\int \frac{x^n}{\sqrt{x^2+a}}\] \[n \in N,a>0,and \space I_n=(a,\infty)\]
anonymous
  • anonymous
Find \[I_0,I_1 ,I_n\]
anonymous
  • anonymous
I did the first two but three i dont understand

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
actually it says show that \[I_n=\frac{1}{n}x^{n-1}\sqrt{x^2+a}-\frac{n-1}{n}aI_{n-2}\]
anonymous
  • anonymous
\[I_0=\ln(x+\sqrt{x^2+a})-\ln\sqrt{a}+c,I_1=\frac{1}{2}\sqrt{x^2+a}+c\]
hartnn
  • hartnn
tried integrating by parts ?
anonymous
  • anonymous
yes\[ f=x^n,f'=nx^{n-1}\] \[g'=\frac{1}{\sqrt{x^2+a}}.g=I_0\] \[I_n=x^n(I_0)-\int I_0nx^{n-1}\]
anonymous
  • anonymous
\[I_0\] is known above
anonymous
  • anonymous
\[I_n=x^n\ln(x+\sqrt{x^2+a})-n\int x^{n-1}\ln(x+\sqrt{x^2+a})\]
anonymous
  • anonymous
using parts twice \[\int(x^{n-1})\ln(x+\sqrt{x^2+a)}\] \[f=x^n-1,f'=(n-1)x^{n-2}\] \[g'=\ln(x+\sqrt{x^2+a)}\] not sure wat to use for g
anonymous
  • anonymous
sry \[f=x^{n-1}\]
hartnn
  • hartnn
let me try lil bit different, \(I_n=\huge\int \frac{x^n}{\sqrt{x^2+a}}dx=\huge\int \frac{x.x^{n-1}}{\sqrt{x^2+a}}dx\) now let f(x) = x^{n-1} , g'(x) =x/(...)
hartnn
  • hartnn
just a thought, donno whether it'll be useful
anonymous
  • anonymous
thanks it works very well,i tried it,just too lazy to post
hartnn
  • hartnn
oh, it works...good to hear :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.