Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

Topi

  • one year ago

I'm wondering why the derivation of inverse function was not teached as dx/dy = (dy/dx)^-1? This is easy way to calculate the derivate of inverse trigfunctions. If y = sin(x) then dy/dx = cos(x) and thus dx/dy = 1/cos(x) = (1-sin(x)^2)^-1/2 = (1-y^2)^-1/2. If y = cos(x) then dy/dx = -sin(x) and dx/dy = -1/sin(x) = -(1-cos(2)^2)^-1/2 = -(1-y^2)^-1/2. If y = tan(x) then dy/dx = cos(x)^-2 = (cos(x)^2 + sin(x)^2)/cos(x)^2 = 1 + tan(x)^2 and dx/dy = 1/(1 + tan(x)^2) = 1/(1+y^2).

  • This Question is Closed
  1. Evander
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Look it's happened becouse of this: if "y = cos(x)" and then the derivate will be dy/dx, but as you know the inverse function of y(x) is x(y) here you have to isolate 'x' look it's mean that x = arccos(y) and then the derivatte will be dx/dy= -1/((1-x^2))^1/2 that's why....

  2. Topi
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    What I meant that there was no mention of this easy rule that the derivate of invere function is the reciprocal of the derivate of the function: \[\frac{ dx }{ dy }=\frac{ 1 }{ \frac{ dy }{ dx } }\] And so the inverse trigonometric functions are easy to derivate as: If \[y = \sin(x) \rightarrow x = \arcsin(y)\] then \[\frac{ dy }{ dx } = \cos(x) = \sqrt{1 - \sin(x)^{2}} =\sqrt{1 - y ^{2}}\] and so \[\frac{ dx }{ dy } = \frac{ 1 }{ \sqrt{1 - y ^{2}} }\] So just write the derivate dy/dx as a function of y and then take the reciprocal and you have the derivate of the inverse function. This is very easy to do with (hyperbolic) trigonometric functions and exponentiation. Look at this: \[\ y = e^x \rightarrow x = ln(y), \frac{ dy }{ dx } = e^{x} = y \rightarrow \frac{ dx }{ dy } = \frac{ 1 }{ y }\]

  3. Topi
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Further more as I'm an european we don't use secant very much and so we usually show the derivative of tangent as: \[y = \tan(x), \frac{ dy }{ dx } = \frac{ 1 }{ \cos^2(x) } = 1 + \tan^2(x)\] So to notice that \[1 + \tan^2(x) = 1 + y^2\] we find out that derivate of \[x = \arctan(y)\] is \[\frac{ dx }{ dy } = \frac{ 1 }{ 1 + y^2 }\] No need to draw any triangles to try to find what the derivate of \[x = \arctan(y)\] is.

  4. Evander
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    you're right

  5. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.