Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

I'm wondering why the derivation of inverse function was not teached as dx/dy = (dy/dx)^-1? This is easy way to calculate the derivate of inverse trigfunctions. If y = sin(x) then dy/dx = cos(x) and thus dx/dy = 1/cos(x) = (1-sin(x)^2)^-1/2 = (1-y^2)^-1/2. If y = cos(x) then dy/dx = -sin(x) and dx/dy = -1/sin(x) = -(1-cos(2)^2)^-1/2 = -(1-y^2)^-1/2. If y = tan(x) then dy/dx = cos(x)^-2 = (cos(x)^2 + sin(x)^2)/cos(x)^2 = 1 + tan(x)^2 and dx/dy = 1/(1 + tan(x)^2) = 1/(1+y^2).

OCW Scholar - Single Variable Calculus
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this and thousands of other questions

Look it's happened becouse of this: if "y = cos(x)" and then the derivate will be dy/dx, but as you know the inverse function of y(x) is x(y) here you have to isolate 'x' look it's mean that x = arccos(y) and then the derivatte will be dx/dy= -1/((1-x^2))^1/2 that's why....
What I meant that there was no mention of this easy rule that the derivate of invere function is the reciprocal of the derivate of the function: \[\frac{ dx }{ dy }=\frac{ 1 }{ \frac{ dy }{ dx } }\] And so the inverse trigonometric functions are easy to derivate as: If \[y = \sin(x) \rightarrow x = \arcsin(y)\] then \[\frac{ dy }{ dx } = \cos(x) = \sqrt{1 - \sin(x)^{2}} =\sqrt{1 - y ^{2}}\] and so \[\frac{ dx }{ dy } = \frac{ 1 }{ \sqrt{1 - y ^{2}} }\] So just write the derivate dy/dx as a function of y and then take the reciprocal and you have the derivate of the inverse function. This is very easy to do with (hyperbolic) trigonometric functions and exponentiation. Look at this: \[\ y = e^x \rightarrow x = ln(y), \frac{ dy }{ dx } = e^{x} = y \rightarrow \frac{ dx }{ dy } = \frac{ 1 }{ y }\]
Further more as I'm an european we don't use secant very much and so we usually show the derivative of tangent as: \[y = \tan(x), \frac{ dy }{ dx } = \frac{ 1 }{ \cos^2(x) } = 1 + \tan^2(x)\] So to notice that \[1 + \tan^2(x) = 1 + y^2\] we find out that derivate of \[x = \arctan(y)\] is \[\frac{ dx }{ dy } = \frac{ 1 }{ 1 + y^2 }\] No need to draw any triangles to try to find what the derivate of \[x = \arctan(y)\] is.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

you're right

Not the answer you are looking for?

Search for more explanations.

Ask your own question