Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Please help me solve y''(x)+6 y'(x)+13 y(x) = 4 e^(-3 x) sin(2 x), y(0) = 1, y'(0) = 2

Differential Equations
See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this and thousands of other questions

\[y''+6y'+13y=4e^{-3x}\sin(2x),\; y(0)=1,\; y'(0)=2\] Homogeneous solution: \[r^2+6r+13=0\\ r=\frac{-6\pm\sqrt{-16}}{2}=-3\pm4i\\ y_c=e^{-3x}\left(C_1\cos(4x)+C_2\sin(4x)\right)\] Non-homogeneous solution: Using the method of undetermined coefficients, try (as a guess) \[y_p=Ae^{-3x}\sin(2x)+Be^{-3x}\cos(2x)\] I'll leave that work to you, since it'd be a pain to type it all out, but I'll be available to check what you get later. The general solution will then be \[y=y_c+y_p\]
Could you please explain a bit more?
I think the explanation provided is quite clear.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

@cke8, which part? The homogeneous solution, or the clue for the non-homogeneous one?
The clue for the non-homogenous one. Thanks!
\[\begin{align*}y_p&=Ae^{-3x}\sin(2x)+Be^{-3x}\cos(2x)\\ &=e^{-3x}\left(A\sin(2x)+B\cos(2x)\right)\\\\ y_p'&=-3e^{-3x}\left(A\sin(2x)+B\cos(2x)\right)+e^{-3x}\left(2A\cos(2x)-2B\sin(2x)\right)\\ &=e^{-3x}\left[(-3A-2B)\sin(2x)+(-3B+2A)\cos(2x)\right]\\\\ y_p''&=-3e^{-3x}\left[(-3A-2B)\sin(2x)+(-3B+2A)\cos(2x)\right]\\&\;\;\;\;\;+e^{-3x}\left[(-6A-4B)\cos(2x)+(6B-4A)\sin(2x)\right]\\ &=e^{-3x}[(5A+12B)\sin(2x)+(5B-12A)\cos(2x)] \end{align*}\] Now plug in y_p'', y_p', and y_p into the original equation and solve for A and B. It seems daunting, but doable. Be sure to keep track of your coefficients and their signs.

Not the answer you are looking for?

Search for more explanations.

Ask your own question