anonymous
  • anonymous
Please help me solve y''(x)+6 y'(x)+13 y(x) = 4 e^(-3 x) sin(2 x), y(0) = 1, y'(0) = 2
Differential Equations
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[y''+6y'+13y=4e^{-3x}\sin(2x),\; y(0)=1,\; y'(0)=2\] Homogeneous solution: \[r^2+6r+13=0\\ r=\frac{-6\pm\sqrt{-16}}{2}=-3\pm4i\\ y_c=e^{-3x}\left(C_1\cos(4x)+C_2\sin(4x)\right)\] Non-homogeneous solution: Using the method of undetermined coefficients, try (as a guess) \[y_p=Ae^{-3x}\sin(2x)+Be^{-3x}\cos(2x)\] I'll leave that work to you, since it'd be a pain to type it all out, but I'll be available to check what you get later. The general solution will then be \[y=y_c+y_p\]
anonymous
  • anonymous
Could you please explain a bit more?
abb0t
  • abb0t
I think the explanation provided is quite clear.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@cke8, which part? The homogeneous solution, or the clue for the non-homogeneous one?
anonymous
  • anonymous
The clue for the non-homogenous one. Thanks!
anonymous
  • anonymous
\[\begin{align*}y_p&=Ae^{-3x}\sin(2x)+Be^{-3x}\cos(2x)\\ &=e^{-3x}\left(A\sin(2x)+B\cos(2x)\right)\\\\ y_p'&=-3e^{-3x}\left(A\sin(2x)+B\cos(2x)\right)+e^{-3x}\left(2A\cos(2x)-2B\sin(2x)\right)\\ &=e^{-3x}\left[(-3A-2B)\sin(2x)+(-3B+2A)\cos(2x)\right]\\\\ y_p''&=-3e^{-3x}\left[(-3A-2B)\sin(2x)+(-3B+2A)\cos(2x)\right]\\&\;\;\;\;\;+e^{-3x}\left[(-6A-4B)\cos(2x)+(6B-4A)\sin(2x)\right]\\ &=e^{-3x}[(5A+12B)\sin(2x)+(5B-12A)\cos(2x)] \end{align*}\] Now plug in y_p'', y_p', and y_p into the original equation and solve for A and B. It seems daunting, but doable. Be sure to keep track of your coefficients and their signs.

Looking for something else?

Not the answer you are looking for? Search for more explanations.