Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Question 4 (Multiple Choice Worth 2 points) If a baseball player hits a baseball from 4 feet off the ground with an initial velocity of 64 feet per second, how long will it take the baseball to hit the ground? Use the equation h = –16t2 + 64t + 4. 2 plus or minus square root of 17 end root over 2 quantity of 2 plus or minus square root of 17 all over 2 2 plus or minus 4 square root of 17 quantity of 16 plus or minus square root of 17 all over 2

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

Here's what I have: h=-16t^2+64+4 0=-16t^2+64t+4 0=-4(4t^2-16t-1) x=-b+-sqrt(b^2-4ac)/2a x=-(-16)+-sqrt(-16^2-4(4)(-1)/2(4) x=16+-sqrt(256-4(-4)/8 x=16+-sqrt(256+16)/8 x=16+-sqrt(272)/8 and now I'm stuck... help?
I think the next step would be: x=16+-sqrt(17)*sqrt(16)/8 then x=16+-4sqrt(17)/8 ??
\[-16t^{2} + 64t + 4 = 0\] would give us \[t = 2 - \frac{ \sqrt{17} }{ 2 }\] and \[t = \frac{ 1 }{ 2 }(4+\sqrt{17})\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

So its the second value!
Can you show me how you got that? (:

Not the answer you are looking for?

Search for more explanations.

Ask your own question