Here's the question you clicked on:
lovesit2x
y=sin(sin(x)) find the derivative
Or gogle wolfram alpha derivative calculator if your unsure of your answer
\[\Large y'=\cos(\sin(x))*\frac{d}{dx}(\sin(x)=\cos(\sin(x))*\cos(x)\]
\[y=sin(sin(x))\]\[u=sin(x)\]\[du/dx=cos(x)\]substitute sin(x) = u\[y=sin(u)\]take the derivitive; recall the chain rule\[dy/dx=cos(u)du/dx\]\[y'=cos(u)cos(x)\]substitute u = sin(x) back\[y'=cos(sin(x))cos(x)\] verification - http://www.wolframalpha.com/input/?i=derivative+of+sin%28sin%28x%29%29