anonymous
  • anonymous
Help prove this integral
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\int\limits_{0}^{\pi/2}\frac{ dx }{ \sin x + \cos x } = \frac{ 1 }{ \sqrt{2} } \ln \ \frac{ \sqrt{2}+1 }{ \sqrt{2}-1 }\]
anonymous
  • anonymous
let u=sin x +cos x du=cosx-sinx dx
anonymous
  • anonymous
\[\int \frac{1}{ \cos x+\sin x}dx\] multiply by cos x-sin x both numerator and denominator

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[\int \frac{\cos x-\sin x}{\cos^2x-\sin^2x} dx=\int \frac{\cancel{\cos x-\sin x}du}{\cos 2x}\frac{du}{\cancel{\cos x-\sin x}}\]
anonymous
  • anonymous
\[\int \frac{du}{\cos 2x}=\int \sec 2x=\ln|\sec 2x+\tan 2x|\]/2
anonymous
  • anonymous
error i never substituted u
anonymous
  • anonymous
I don't have time to put an explanation here, but use the substitution u = tan(x/2): http://www-math.mit.edu/~djk/18_01/chapter24/section03.html
anonymous
  • anonymous
Pretty sure others can help you if you get stuck :3
experimentX
  • experimentX
|dw:1362839531405:dw|
anonymous
  • anonymous
its all good .. thanks for the responses :)
experimentX
  • experimentX
there's one another way to do it .. change all trigs into half angles, and change sines and cosines into tan and sec .. you should end up something like|dw:1362841238898:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.