Schrodinger
  • Schrodinger
Followup to a derivatives question earlier: I'm told to find all critical points and specify which extrema are maxima or minima. I'm having trouble just chunking through the numbers. (Problem below).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
stamp
  • stamp
i am not a doctor but i will see what i can help you
Schrodinger
  • Schrodinger
\[y = x ^{2/3}(x+2)\]\[y \prime = \frac{ 5x+4 }{ 3\sqrt[3]{x} }\]All critical points should occur at an endpoint or at y' = 0 or y' being undefined by the definition of a critical point. The answers that satisfy the definition are \[x = 0, x = -\frac{ 4 }{ 5 }.\]Plugging the x values back into y itself, I am supposed to get\[y = 0, y =\frac{ 12 }{ 25 }10^{1/3}\]I have no idea how that second one is gotten. First one, makes sense, everything is cancelled out by being multiplied by zero. Second one, you have \[(-\frac{ 4 }{ 5 })^{2/3}(-\frac{ 4 }{ 5 }+2)\]How the hell are they ending up with that neat, fractional answer with that last bit?
Schrodinger
  • Schrodinger
(Oh, and pardon me, i'm just horrible at algebra. Always have, will be marginally better with time. Eventually. Maybe.)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

stamp
  • stamp
y'(0) does not exist 5x + 4 = 0 when x = -4/5 so y'(-4/5) = 0 y'(-4/5) is your critical point
Schrodinger
  • Schrodinger
y'(0) is still a critical point. It's undefined, but it doesn't not exist. And by the definition of a critical point [y'(0) is undefined, an end point within a defined interval or at a point where y' = 0], it is a critical point. My book lists it as an answer word for word, and my book is definitely right.
stamp
  • stamp
Well if x = 0 and x = -4/5 are you critical points, find f(0) and f(-4/5)
stamp
  • stamp
f(0) = 0
Schrodinger
  • Schrodinger
I found them above. I'm just having trouble numerically working out the second one.
stamp
  • stamp
something is amiss
Schrodinger
  • Schrodinger
What's amiss? I'm just bad with fractions being raised to fractional exponents less than one, especially when the base is also less than one, lol. I just don't understand how they're getting a clean, fractional answer from it. Whenever I take the cube root of those fractions I just get an irrational slew of numbers, not a clean-cut, dandy little fraction.
phi
  • phi
\[ (-\frac{ 4 }{ 5 })^{2/3}(-\frac{ 4 }{ 5 }+2) \] \[ (\frac{ 4^2 }{ 5^2 })^{1/3}(\frac{ 6 }{ 5 }) \] \[ (\frac{ 2\cdot 2^3 }{ 5^2 })^{1/3}(\frac{ 6 }{ 5 }) \] \[ (\frac{ 5\cdot 2\cdot 2^3 }{ 5 \cdot 5^2 })^{1/3}(\frac{ 6 }{ 5 }) \] \[ (\frac{ 10\cdot 2^3 }{ 5^3 })^{1/3}(\frac{ 6 }{ 5 }) \] \[ 10^{1/3}(\frac{ 2 }{ 5 })(\frac{ 6 }{ 5 }) \] \[ 10^{1/3}\frac{ 12 }{ 25 }\]
Schrodinger
  • Schrodinger
@phi , Line 4, did you just multiply the left portion by 5/5?
phi
  • phi
yes, because it would be nice to have 5^3 in the bottom, so we can take its cube root.
Schrodinger
  • Schrodinger
Makes sense, just making sure. Thanks so much, dude, this helps a lot.

Looking for something else?

Not the answer you are looking for? Search for more explanations.