anonymous
  • anonymous
Use a half-angle formula to simplify: (sin4 theta)/(1+cos4theta).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\sin4\theta/1+\cos4\]
zepdrix
  • zepdrix
oh ok :) hmm
anonymous
  • anonymous
The bottom half should read: (1+cos 4 theta)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

zepdrix
  • zepdrix
Ok so this appears to be the `Tangent Half-Angle Identity`. \[\large \tan \frac{x}{2}=\frac{\sin x}{1+\cos x}\]
zepdrix
  • zepdrix
So we appears to have something that looks like the `right` side of this identity, yes?
zepdrix
  • zepdrix
appear*
anonymous
  • anonymous
right, yes.
zepdrix
  • zepdrix
If it helps, maybe make a substitution. Let \(\large x=4\theta\) We know that this will simplify down to \(\large \tan \dfrac{x}{2}\). So from here, \(\large x=4\theta\), solve for x/2! :)
zepdrix
  • zepdrix
is that confusing? :c
anonymous
  • anonymous
Ok, never mind that post, I got it. Thanks!!
zepdrix
  • zepdrix
k c:

Looking for something else?

Not the answer you are looking for? Search for more explanations.