anonymous
  • anonymous
Find the norm of vector r prime of t when r(t) = t^2i + 2sintj + 2costk
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
r'(t)=? r(t) is given
anonymous
  • anonymous
so start with taking derivative
anonymous
  • anonymous
then square each component , add them

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
take square root
anonymous
  • anonymous
\[\sqrt(4t^2 + 4\cos^2t + 4\sin^2t)\]
anonymous
  • anonymous
What's the trig identity for cos and sin?
anonymous
  • anonymous
cos^2 t + sin^2 t =1
anonymous
  • anonymous
so does the second half of that just become 8?
anonymous
  • anonymous
4( 1)=4
anonymous
  • anonymous
Can you explain? I can never follow this one...
anonymous
  • anonymous
cos(t)^2+sin(t)^2=1 4(cos(t)^2+sin(t)^2)=4
anonymous
  • anonymous
Ohhhh.... Is that technically combining like terms?
anonymous
  • anonymous
I guess
anonymous
  • anonymous
Thanks!
anonymous
  • anonymous
no problem

Looking for something else?

Not the answer you are looking for? Search for more explanations.