Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Help with Part 1 of the Fundamental Theorem of Calculus?? What does this mean? (d/dx) integral x to a f(t) dt = f(x)??????

See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this and thousands of other questions

it means, in english, that "the derivative of the integral is the integrand"
I'm confused about the d/dx part in particular...
that is, if \[F(x)=\int_a^xf(t)dt\] then \[F'(x)=f(x)\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

notice that \[F(x)=\int_a^xf(t)dt\] is a function of the variable \(x\) and not of \(t\)
for example, if \[F(x)=\int_0^x\sin(t)dt\] then \[F'(x)=\sin(x)\]
So what does that mean d/dx mean exactly? Does it have todo with the dx dummy variable? Sorry, but that d/dx I throwing me off. Does it mean I have to take the derivative once I find the anti derivative?
the \(\frac{d}{dx}\) notation just means the derivative wrt \(x\) do not be confused by that, it is the same as saying the derivative of the integral is the integrand

Not the answer you are looking for?

Search for more explanations.

Ask your own question