Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

prove that the function f(x)=....has a derivative at x=0

Calculus1
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
\[f(x)=x²\cos \frac{ 1 }{ 2 }, when x \neq 0; 0, when x=0\]
so a graphing calculator shows that x²cos(1/2) fluctuates near 0, and I believe it might not be continuous at 0. So the problem is to say that the piecewise function is defined and continuous and therefore has a derivative?
Is that function typed correctly? I'm getting a very smooth looking parabola as my graph for that.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

you're right, I must have made a mistake before. but still the problem would be that if f(x) wasn't defined to be 0 at 0, it wouldn't be continuous and have a derivate at 0?
*derivative at 0
Could it have been \[x^2\cos\left(\frac{1}{2x}\right)\]
oh, it's actually x²cos(1/x)
Ah. Well, to show that it's differentiable, you basically have to show that it's continuous, and that the limit \[\lim_{h\to0} \frac{f(0+h)-f(0)}{h}\]exists.
To show continuity, you need to show\[\lim_{x\to 0} x^2\cos\left(\frac{1}{x}\right)=0.\]
so cos (1/x) at x->0 would be undefined because of (1/0), right? but then I don't know how to go further
What you could do, is since \(\cos(x)\) is bounded by -1 and 1, when you multiply by \(x^2\), that term will dominate. So \[\lim_{x\to 0} x^2\cos\left(\frac{1}{x}\right)=0.\]
In the first limit, \[\lim_{h\to0} \frac{f(0+h)-f(0)}{h} =\lim_{h\to0} \frac{h^2\cos\left(\frac{1}{h}\right)}{h}\]We just showed that the numerator goes to 0, so we can use L'hopital's on this.
L'hopital's rule comes only later in the course!
In that, case, try multiplying by \[\Large\frac{\frac{1}{h}}{\frac{1}{h}}\]
Then we get \[\lim_{h\to0}\frac{h\cos\left(\frac{1}{h}\right)}{1}=\lim_{h\to0}h\cos\left(\frac{1}{h}\right)\]
"What you could do, is since cos(x) is bounded by -1 and 1, when you multiply by x2, that term will dominate." but does it not matter that 1/0 would be undefined?
But you aren't dividing by 0. You're just getting very close. So you have \[\cos(\text{A very large number})\] which is bounded by -1 and 1.
I've got to go now. Hopefully that made enough sense. To do that very last limit, use the same fact that cosine is bounded.
Refer to the attached plot of\[\left\{x^2 \cos \left(\frac{1}{x}\right),\sin \left(\frac{1}{x}\right)+2 x \cos \left(\frac{1}{x}\right)\right\} \]in blue and red respectively.
1 Attachment
Sorry, the tiff graphic above is not viewable unless your have access to Apple's Safari browser or perhaps photoshop.
@robtobey I can see it on Ubuntu no problem. Now I just need to figure out what youre trying to say ;)
why is \[\lim_{h \rightarrow 0}\frac{ f(0+h)-f(0) }{ h }=\lim_{h \rightarrow 0}\frac{ h²\cos(\frac{ 1 }{ h }) }{ h }\] ?
Because \(f(0+h)=f(h)=h^2cos(\frac{1}{h})\) (just replace x with h) Also, \(f(0)=0\), so\[\lim_{h \rightarrow 0}\frac{ f(0+h)-f(0) }{ h }=\lim_{h \rightarrow 0}\frac{ f(h)-f(0) }{ h }=\lim_{h \rightarrow 0}\frac{ h^2\cos(\frac{1}{h})-0 }{ h }=\lim_{h \rightarrow 0}\frac{ h^2\cos(\frac{1}{h})}{ h }\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question