H-E-L-P : HOW TO FIND DERIVATIVE SQUARE ROOT OF 8-6*X^2

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

H-E-L-P : HOW TO FIND DERIVATIVE SQUARE ROOT OF 8-6*X^2

Calculus1
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\sqrt{8-6*X^2}\]
the derivative of \(\sqrt{f(x)}\) is \[\frac{f'(x)}{2\sqrt{f(x)}}\]
can we do this step by step please.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

the steps are what i wrote above take the derivative of \(8-6x^2\) and by the power rule, you get \(-12x\) that goes in the numerator in the denominator you put \(2\sqrt{8-6x^2}\)
oh... why do we put that as the denominator?
all that is left to do is cancel a 2 top and bottom
the derivative of \(\sqrt{x}\) is \(\frac{1}{2\sqrt{x}}\) therefore by the chain rule the derivative of \(\frac{1}{f}\) is \(\frac{f'}{2\sqrt{f}}\) where \(f\) is any function
for example, the derivative of \(\sqrt{\sin(x)}\) is \[\frac{\cos(x)}{2\sqrt{\sin(x)}}\]
the derivative of \[\sqrt{3x^2+2x}\] is \[\frac{6x+2}{2\sqrt{3x^2+2x}}\]
after i have -12x/ 2radical 8-6x^2.. how can i find the critical points?

Not the answer you are looking for?

Search for more explanations.

Ask your own question