Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

mathcalculus Group Title

help :( locate all critical points ( both types ) of h(x)= radical 8-6*x^2 The critical point(s) is (are) .

  • one year ago
  • one year ago

  • This Question is Closed
  1. MoonlitFate Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    So the function h(x) = \[\sqrt{8-6x^2}\] , is that right? By critical points, do you mean relative maxima / minima?

    • one year ago
  2. mathcalculus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    yes

    • one year ago
  3. mathcalculus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    i mean x and y

    • one year ago
  4. mathcalculus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    critical points..

    • one year ago
  5. MoonlitFate Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Oh, okay. First of all, do you know how to take the derivative of h(x)?

    • one year ago
  6. mathcalculus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    so far im here: -12x/ 2 radical 8-6x^2

    • one year ago
  7. MoonlitFate Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    The derivative of h(x) is: \[\frac{ -6x }{ \sqrt{8-6x ^{2}} }\]

    • one year ago
  8. MoonlitFate Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    The next step, is finding where f'(x) = 0 or is undefined, since that's going to find the critical points of f. And you can use those to form intervals to test for minima and maxima.

    • one year ago
  9. MoonlitFate Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    So, you're going to set f'(x) to 0 and solve for x.

    • one year ago
  10. mathcalculus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    okay makes sense... then to find the critical points i equal that to zero... and just solve for x?

    • one year ago
  11. mathcalculus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    oh so wait, i don't equal it to zero.... i plug in zero into x?? and from the original problem i plug int the x when i find that out?

    • one year ago
  12. MoonlitFate Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\frac{ -6x }{ \sqrt{8-6x ^{2}} } = 0 \] \[(\sqrt{8-6x ^{2}}) *\frac{ -6x }{ \sqrt{8-6x ^{2}} } = 0 \sqrt{8-6x ^{2}}\] \[-6x = 0\] \[x=0\]

    • one year ago
  13. MoonlitFate Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Also f is undefined when:\[x = \pm \frac{ -2\sqrt{3} }{ 3 }\] and since there can't be a negative square root for the denominator, the domain of f is \[[x = \pm \frac{ -2\sqrt{3} }{ 3 }]\] , so you will use that along with 0 to make test intervals.

    • one year ago
  14. mathcalculus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    I got zero as well... not how do i find y

    • one year ago
  15. mathcalculus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    i plugged in zero into the normal question... and got 2 radical 2

    • one year ago
  16. mathcalculus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    answer: (0,2 radical 2) is wrong://

    • one year ago
  17. MoonlitFate Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Gah, I was doing something more complicated. Ignore the part about test intervals, sorry. :(

    • one year ago
  18. mathcalculus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    its okay can we do after we find the x

    • one year ago
  19. mathcalculus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    the y..

    • one year ago
  20. MoonlitFate Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Plug in the critical numbers into the f(x).

    • one year ago
  21. mathcalculus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    i plug in 0 in the original function? to find y right

    • one year ago
  22. MoonlitFate Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Yes, sorry. Working it out over here, too. ^^;

    • one year ago
  23. mathcalculus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    \[2\sqrt{2}\]...

    • one year ago
  24. mathcalculus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    i keep getting wrong :(

    • one year ago
  25. mathcalculus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    ?

    • one year ago
  26. MoonlitFate Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    \[f(0) = \sqrt{8-6(0)^2} = \sqrt{8}= 2\sqrt{2}\]

    • one year ago
  27. MoonlitFate Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    I was actually getting kinda confused, and I ended up graphing it to check.

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.