appleduardo
  • appleduardo
whats the integral of ln(x^(2) + 1)??
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
appleduardo
  • appleduardo
so far I have:\[\ln(x ^{2}+1)x-\int\limits_{}^{}x*\frac{ 2x }{ x ^{2}+1 } dx\]
.Sam.
  • .Sam.
Long division for the int. by parts?
appleduardo
  • appleduardo
uhmm could that work?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
my guess is parts
anonymous
  • anonymous
oh nvm you have that already
.Sam.
  • .Sam.
\[\ln(x ^{2}+1)x-\int\limits\limits_{}^{}2-\frac{2}{x^2+1} dx \]
anonymous
  • anonymous
\[\frac{x^2}{x^2+1}=\frac{x^2+1}{x^2+1}-\frac{1}{x^2+1}=1-\frac{1}{x^2+1}\]
anonymous
  • anonymous
first integral is obvious, second part is the derivative of arctangent
anonymous
  • anonymous
i ignored the 2, @.Sam. has it
anonymous
  • anonymous
you could divide too, but i find that gimmick easier than long division
appleduardo
  • appleduardo
thank you! I'll try and post it when im done :P

Looking for something else?

Not the answer you are looking for? Search for more explanations.