HELP Please. Use implicit differentiation to find the equation of the tangent line to the curve xy^3+xy=4 at the point (2,1) . The equation of this tangent line can be written in the form: y=mx+b
where M is:
and where B is:

- anonymous

- jamiebookeater

See more answers at brainly.com

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this

and **thousands** of other questions

- dumbcow

remember product rule for implicit
\[(fg)' = f'g +fg'\]

- dumbcow

M = slope = dy/dx

- anonymous

oh so for implicit we use the product?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

## More answers

- anonymous

always?

- dumbcow

yes and chain rule....since it is with respect to x
\[d/dx f(y) = f'(y)*\frac{dy}{dx}\]

- anonymous

so which is f and which is g

- anonymous

im a little confused since xy^3 are together.

- dumbcow

depends on the term...first there is "xy^3"
f(x) = x
g(y) = y^3

- anonymous

so f = x and g= y^3 ?

- anonymous

so is the derivative: x*3y+ y^3*1 ?

- dumbcow

yes, so result is
\[1*y^{3}+ x*3y^{2} \frac{dy}{dx}\]

- anonymous

dy/dx?

- dumbcow

thats what the slope is...which is what we are trying to find

- anonymous

all i know is the product rule is this:
\[\frac{ d }{ dx } (fg)= f g \prime+g f \prime\]

- dumbcow

anytime you differentiate a function of "y" wrt x you must multiply by "dy/dx"
refer to my prev post

- anonymous

otay. so then what.

- dumbcow

repeat process for all terms of equation

- anonymous

?

- anonymous

what do you mean

- dumbcow

xy^3 +xy = 4
you have to differentiate each term, the "xy^3" and "xy" adn "4"

- anonymous

3xy^2.....

- dumbcow

??
first term is
\[(y^{3} +3xy^{2} \frac{dy}{dx})\]

- dumbcow

next term is "xy" .... derivative is
\[(y + x \frac{dy}{dx})\]
then of course , derivative of constant is 0
now you have
\[y^{3} +3xy^{2} \frac{dy}{dx} +y+x \frac{dy}{dx} = 0\]

- dumbcow

solve for "dy/dx" in terms of x and y

- anonymous

okay i understand from here:
\[\frac{ dy }{ dx}= 3xy ^{2}+ y ^{3}\]

- anonymous

then from there, i don't know what to do.

- anonymous

@dumbcow

- dumbcow

well from there you would plug in the given point (2,1) to give you the slope (M) of tangent line
but how did you solve for dy/dx .... your answer is wrong

- anonymous

i didn't i'm doing this step by step

- anonymous

from the result.. ^^ i just multiplied.

- dumbcow

?? sorry i am not understanding

- anonymous

remember before you wrote "yes, result is bla blah" then from there i just multiplied... x*(3y)^2 + y^3 *1

- anonymous

you know.

- dan815

hey mathcalculus

- dan815

do you know chain rule

- dan815

|dw:1363334172119:dw|

- dumbcow

let me just show the steps, maybe that will help
\[y^{3}+3xy^{2} \frac{dy}{dx} +y+x \frac{dy}{dx} = 0\]
\[3xy^{2} \frac{dy}{dx}+x \frac{dy}{dx} = -y^{3}-y\]
\[\frac{dy}{dx}(3xy^{2}+x) = -y^{3}-y\]
\[\frac{dy}{dx} = \frac{-y^{3}-y}{3xy^{2}+x}\]

- dumbcow

i get the feeling i lost you when i started using "dy/dx" :{

- anonymous

mhm :/

- anonymous

|dw:1363334405957:dw| @dan815

- dan815

|dw:1363334256950:dw|

- dan815

think about it like this Y is a function of X right so
say you have to take the derivative of 2x^2 what is it?

- dan815

|dw:1363334523512:dw|

- anonymous

wait wait wait

- dumbcow

thx @dan815 for clarifying :)
i didn't explain very well

- dan815

remember how chain rule works

- anonymous

the chain rule: if f(x)= g(k(x)) then f prime x= g prime (k(x))k prime (x) correct?

- anonymous

@dumbcow you explained very good too.

- dan815

@dumbcow no its okay lol i can relate to him cuz i know how noobs think :)

- anonymous

i just can't understand @dan815 techwriting lol

- dan815

yes that is chain rule

- anonymous

noob? -_-

- anonymous

411- not a guy.

- dan815

haha trust me we are all noobs, just wait till you see how much those phd profs know

- anonymous

okay dc back to math.

- anonymous

thank god, no more crazy math after this. but seriously back to work lol

- anonymous

i have to understand this.

- dan815

ok ok so for implicit differentiation when you see Y think about it like some function on x

- anonymous

ello?

- anonymous

yup got that.

- anonymous

then?

- dan815

ok do this

- anonymous

so first i was told to use the product rule.. then the chain. which that confused me a little. so lets take it step by step please.

- dan815

|dw:1363334909090:dw|

- dan815

yes you are going to need both those rules for this

- dan815

no remember than y is like a function of x

- anonymous

OH

- anonymous

darn it.

- dan815

|dw:1363334981033:dw|

- anonymous

so we use the product rule 1st.

- dan815

sub 2x where you see Y and solve it

- anonymous

i have no idea what im doing.

- anonymous

for some reason I'm all confused.

- dan815

okay look at this question again same question but im telling you what y is

- anonymous

don't tell me what y is. how am i suppose to know alone?

- anonymous

let's do that problem that I gave.

- dan815

|dw:1363335163468:dw|

- dan815

just do this im trying to teach you how to do the problem above and every other problem like this

- anonymous

k -.-

- anonymous

x= 2/5 ?

- anonymous

i plugged in 2x..

- dan815

wut no find dervivative

- dan815

chain rule

- anonymous

?

- dan815

|dw:1363335349192:dw|

- dan815

do you get how i got that when i differentiated there

- dan815

whats confusing you there is it the d/dx?

- dan815

i know that you know how to take derivate of Xs

- dan815

you there?

- dumbcow

any progress being made here...

- anonymous

yeah im looking.

- dan815

ya i think so lol we've found the root problem here

- dan815

she just doesnt know what it means to difference functions as opposed to variables

- anonymous

@dumbcow you used the product rule first which i was understanding.... until mr. CHAIN RULE came along to make a knot.

- anonymous

:)

- dan815

|dw:1363335696884:dw|

- dan815

do you understand this yet?

- dumbcow

yeah...sorry i figured that was implied since we are dealing with implicit differentiation :|

- anonymous

yeah @dan815 but now why did you multiply 2 at the end.?

- dan815

thats chain rule remember you have to multiply by the derivative of the function inside the bracket

- anonymous

i understand you got the derivative

- anonymous

|dw:1363335825708:dw|

- dan815

|dw:1363335821148:dw|

- dan815

this is known as the chain rule

- anonymous

okie let's do our problem @dan815

- anonymous

i know youre trying to teach me, so i can do the rest.. etc; but i need to do one problem first in order to proceed.

- anonymous

i remember the chain rule a little better now.

- dan815

so if its |dw:1363335898535:dw|

- dan815

ok lets go back to our problem knowing the chain rule now

- anonymous

gratzie

- dan815

what i really wanted you to undetsand was this concept though basically you have to think of Y as a function so when you see Ys differentiating Y is like differentiation of a function so think chain rules

- dan815

|dw:1363336027415:dw|

- dan815

so for the implict up there

- anonymous

ok

- anonymous

got it, think the x as in y.

- anonymous

so our problem... is this: xy^3+xy=4 at the point (2,1) .

- anonymous

start by:

- dan815

|dw:1363336084849:dw|

- dan815

|dw:1363336247542:dw|

- dan815

so you try it d/dx (xy^3) = ? if Y is a function of x

- dan815

|dw:1363336439304:dw| there i put it brackets to emphasize thats Y really in your head you should imagine some functions with like X^4 + 3x+x....