anonymous
  • anonymous
Evaluate the definite integral using the Fundamental Theorem of Calculus. You will need accuracy to at least 4 decimal places for your numerical answer to be accepted. You can also leave your answer as an algebraic expression involving square roots.
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
Evaluate the definite integral using the Fundamental Theorem of Calculus. You will need accuracy to at least 4 decimal places for your numerical answer to be accepted. You can also leave your answer as an algebraic expression involving square roots.
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[\int\limits_{1}^{3}(\frac{ d }{ dt }\sqrt{5+3t^4})dt\]
zepdrix
  • zepdrix
Hmm so this is a little different than the last one. I think we have something like this going on.\[\large \int\limits_1^3 \frac{d}{dt}f(t)dt \qquad = \qquad \int\limits_1^3 f'(t)dt \qquad = \qquad f(t)|_1^3\]
zepdrix
  • zepdrix
\[\large = f(3)-f(1)\] Make sense? :o

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yeah, you just took out the equation itself to understand the format
zepdrix
  • zepdrix
Yah these problems are always a little weird. We're differentiating, then anti-differentiating. So we end up with what we started with. Then we just evaluate it at the limits.
anonymous
  • anonymous
then just go back and put the values into the function getting \[\sqrt{248}-\sqrt{8}\] which is right Thanks, thats what I struggle with is where they want me to go with them
zepdrix
  • zepdrix
cool c:

Looking for something else?

Not the answer you are looking for? Search for more explanations.