anonymous
  • anonymous
solving an equation If f(x)=x^3-8x+10, show that there are values c for which f(c) equals; a)pi b)-square root of 3 c)5,000,000
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
a. 15.87
harsimran_hs4
  • harsimran_hs4
for each part proceed this way... a) pi let there be a number c such that f(c) = pi i.e x^3 - 8x + 10 = pi x^3 -8x +10-pi = 0 all you need to show is that there is at least one real root of this equation and you are done
anonymous
  • anonymous
so for b is -9.05

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

harsimran_hs4
  • harsimran_hs4
what -9.05 ??
anonymous
  • anonymous
oh I plugged something wrong. Is it, 18.66
harsimran_hs4
  • harsimran_hs4
10 + sqrt(3) = 11.732 x^3 -8x +11.732 = 0 for 2nd part
klimenkov
  • klimenkov
\(f(x)\) is continuous, so it can possess any value between \(f(a)\) and \(f(b)\). If you put \(a=-\infty\) and \(b=\infty\), you will have, that your polynomial can possess any value from \(\mathbb R\). This is the proof.
anonymous
  • anonymous
Basically, you want to use the intermediate value theorem.

Looking for something else?

Not the answer you are looking for? Search for more explanations.