anonymous
  • anonymous
The Mean Value Theorem of integrals says that if f is continuous on a closed bounded interval [a, b], there exists a number c, between a and b, such that Integral of f[x] dx =f (c) (b - a) Find the value c that satifies the mean value theorem for f(x) = ln(x) on the interval [1,2]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
height times length .... equals area
amistre64
  • amistre64
integrate ln(x) from 1 to 2, and divide it by the length of the interval .... stuff like that
anonymous
  • anonymous
do you know how to compote \[\int_1^2\ln(x)dx\]?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
*compute
anonymous
  • anonymous
I got the answer to be log[2] ?
amistre64
  • amistre64
integrate ln(x), xlnx - x (2 ln2 - 2) - (1ln1 - 1) 2 ln2 - 1 ln4 - 1, and since b-a = 2-1 = 1, we get ln(c) = ln4 - 1 c = e^(ln4 - 1) c = 4 - e^(-1) right?
amistre64
  • amistre64
err, 4e^(-1) might be better
anonymous
  • anonymous
I dont undestnad what i am integrating... you are you also doing xlnx-x?

Looking for something else?

Not the answer you are looking for? Search for more explanations.