anonymous
  • anonymous
solve this ordinary differential equation dy/dx = 1-xy-y+x , given y(0),= 1.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zepdrix
  • zepdrix
Hmm so it looks like this is separable. Just takes a little bit of work on the right side. Factor by grouping. \[\large y'=1-xy-y+x\]Factoring a -y out of each of the middle terms gives us,\[\large y'=1-y(x+1)+x\]We'll rewrite it like this,\[\large y'=(x+1)-y(x+1)\]Now we can factor an x+1 out of each term, giving us,\[\large y'=(x+1)(1-y)\]
zepdrix
  • zepdrix
Separating variables gives us,\[\large \frac{dy}{1-y}=(x+1)dx\] Understand how to solve it from here? :o
anonymous
  • anonymous
thanks for solution..... i done this method in my exam and today or by tomorrow i wil get my result... i wanted to confirm.... thank u so much...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

zepdrix
  • zepdrix
cool c:
mathslover
  • mathslover
And also @soumyan : \[\large{\color{orange}{\textbf{WELCOME TO OPENSTUDY}}}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.