Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

can some one help on this please?? ill award and fan ! show whether Rolle's theorem can be applied to f(x) if it can determine any values of c in the interval [o,2 pi] for which f'(c)=0 f(x)=cos x

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

whats f(x)
you'll need to specify f(x) = ???
oh sprry @Kanwar245 and @dpaInc

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

f(x)=cos x
sorry *
do you remember the conditions needed to apply Rolle's Theorem?
conditions: 1- f(x) has to be continuous on [0, 2pi] .... is it? 2- f(x) has to be differentiable on (0, 2pi) .... is it? 3- f(0) = f(2pi) .... is it?
@dpaInc are you asking ??
yes... i'm asking... if all those conditions are met, then u can use Rolle's Theorem.
To satisfy Rolle's theroem, f(0)=f(2pi), f(x) is continuous in [0, 2pi], and is differentiable in (0, 2pi). So, to show whether Rolle's theorem can be applied to f(x)=cos(x), show cos(0)=cos(2pi). And cos(x) is continuous and differentiable...

Not the answer you are looking for?

Search for more explanations.

Ask your own question