anonymous
  • anonymous
Compute the surface area of the portion of the cone z=sqrt(x^2+y^2) below the plane z=4.
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
schrodinger
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
|dw:1363841657543:dw|
anonymous
  • anonymous
\[ dA=2\pi\,r(z)\,dz\\ r = z\\ A=2\pi\int_0^4zdz=2\pi\left[{z^2\over 2}\right]_0^4=16\pi \]
anonymous
  • anonymous
That's not the answer, it should be 16pi*sqrt(2).

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
my bad.. \[ A=\iint_z\sqrt{\left({\partial z\over \partial x}\right)^2+\left({\partial z\over \partial y}\right)^2+1}dx\,dy \]
anonymous
  • anonymous
to get the limits, \[z=4\\x^2+y^2=(2)^2\] circle of radius 2 so, \(0\le x,y\le2\)
anonymous
  • anonymous
Method 2: Polar co-ordinates Use \(x=r\cos\theta\\y=r\sin\theta\) \[z(r,\theta)=r^2\\0\le r\le2,\qquad 0\le\theta\le2\pi\]
anonymous
  • anonymous
Could you set up the integral?
anonymous
  • anonymous
correction: \[A=\iint_R\sqrt{\ldots}(\pi\,dx\,dy)\] so, \[A=\int_{x=-4}^4\int_{y=0}^2\sqrt{{x^2\over x^2+y^2}+{y^2\over x^2+y^2}+1}dx\,dy\\ A=\sqrt{2}\int_{x=-4}^4\left(\int_{y=-\sqrt{16-x^2}}^\sqrt{16-x^2}dy\right)dx\\ A=\sqrt{2}\int_{-4}^42\sqrt{16-x^2}dx\\ \text{use }\;x=4\sin\theta\implies\theta=\sin^{-1}(x/4)\implies dx=4\cos\theta d\theta\\ \text{when}\;x=-4,\quad\theta=-{\pi\over2}\\ \text{when}\;x=4,\quad\theta={\pi\over2}\\ A=2\sqrt{2}\int_{-\pi\over2}^{\pi\over2}2\cos\theta(4\cos\theta d\theta)\\ A=8\sqrt{2}\int_{-\pi\over2}^{\pi\over2}(1-\cos2\theta)d\theta A=8\sqrt{2}\left[\theta-{\sin2\theta\over2}\right]_{-\pi\over2}^{\pi\over2}\\ A=8\sqrt{2}\left[{\pi\over2}+{\pi\over2}\right]\\ \boxed{A=8\pi\sqrt{2}} \] @satellite73 could you check plz
anonymous
  • anonymous
@Idealist This is Half of the surface of the cone rotating one way from x=-4 to x=4 the the other half from x=4 to x=-4
anonymous
  • anonymous
Thanks for your time and effort.

Looking for something else?

Not the answer you are looking for? Search for more explanations.