Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

at the lecture of Work, average value, probability(23th lecture) when the professor tried to find the average height of a unit circle( a portion above the x-axis) with y=sin(θ), he said that the relative weight of lower portion of the upper semi-circle is heavier. But when it comes to y=(1-x)^(1/2)( I mean changing the variable), this does not happen( all relative weight is equal) Why? I cannot understand this point.

MIT 18.01 Single Variable Calculus (OCW)
See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer


To see the expert answer you'll need to create a free account at Brainly

Would you give a time frame for the video? On the basis of what you said, I'm a little confused. You have y=sin(theta), but in polar coordinates there is no y variable. If it's y=sin(x), that is not a unit circle, it's a sine wave.
Work, average value, probability 6:30-13:00|dw:1363927655997:dw|
I don't know how to think the 2nd question can you help me?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I have reviewed that portion of the lecture. The professor gives a recap of his reasoning at 14:30 to 15:00 in the video. I would recommend watching that portion of it once or twice. If you still have questions about it, see if you can pin down exactly where in his explanation that you begin to have problems. I'm not sure where that problem came from that you attached. I would suggest plugging in values and doing the integration.

Not the answer you are looking for?

Search for more explanations.

Ask your own question