Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Use mathematical induction to prove that for all positive integers 3 is a factor of n^3 + 2n.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

wow induction for this?
first check that it is true if \(n=1\) which it is because \(1^2+2\times 1=3\) and 3 is a factor of 3
now assume that it is true if \(n=k\) meaning assume that for all \(k\) you have \[k^3+2k\] is divisible by 3 now lets see if we can prove it is true for \(k+1\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

that is, see if you can show that \[(k+1)^3+2(k+1)\] is divisible by 3, if you get to assume that \(k^3+2k\) is mostly it is algebra to see if you can arrange to get a \(k^3+2k\) out of \[(k+1)^3+2(k+1)\]
but i get the feeling i am talking to myself, so i will be quiet now
from step2, \[k^3+2k=3a\\ k(k^2+2)=3a\] \[ (k+1)^3+2(k+1)=(k+1)[(k+1)^2+2]\\ \qquad=(k+1)[k^2+2k+1+2]\\ \qquad=(k+1)\left[{3a\over k}+2k+1\right]\\ \qquad=3a+2k^2+k+{3a\over k}+2k+1\\ \qquad=(3a)\left(1+{1\over k}\right)+3k+(2k^2+1) \] each of the three terms is a factor of "3"
proof for \[2k^2+1=2\left({3a\over2}-2\right)+1=3a\]
Makes sense.

Not the answer you are looking for?

Search for more explanations.

Ask your own question