anonymous
  • anonymous
can someone help me simplify the derivative of x/sqrt(1-x^2) ? This is for problem 5A-3G of the second problem sets, and I think my proficiency with radicals may not be up to snuff to be able to properly solve this.
OCW Scholar - Single Variable Calculus
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
What do you mean by simplifing? Let's calculate the derivative first:\[\frac{ d }{ dx }\frac{ x }{ \sqrt{1-x ^{2}} }=\frac{ d }{ dx }x(1-x ^{2})^{-\frac{ 1 }{ 2 }}=x \frac{ d }{ dx }(1-x ^{2})^{-\frac{ 1 }{ 2 }}+(1-x ^{2})^{-\frac{ 1 }{ 2 }}\]\[=x(-\frac{ 1 }{ 2 }(1-x ^{2})^{-\frac{ 3 }{ 2 }})\frac{ d }{dx }(1-x ^{2})+(1-x^2)^{-\frac{ 1 }{ 2 }}\]\[=-\frac{ 1 }{ 2 } x(1-x^2)^{-\frac{ 3 }{ 2 }}(-2x)+(1-x^2)^{-\frac{ 1 }{ 2 }}=\frac{ x^2 }{ \sqrt{(1-x^2)^3} }+\frac{ 1 }{ \sqrt{1-x^2} }\]If you want to take that over common denominator, you have to multiply the last term with\[\frac{ 1-x^2 }{ 1-x^2}\]so you get\[\frac{ x^2+1-x^2 }{ \sqrt{(1-x^2)^3} } = \frac{ 1 }{ \sqrt{(1-x^2)^3} }\]That might be the simplest form for that derivative.
anonymous
  • anonymous
thank you very much! that's exactly what I needed!
anonymous
  • anonymous
thank you

Looking for something else?

Not the answer you are looking for? Search for more explanations.