A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing


  • 3 years ago

find the critical points of f(x y) = 4+x^3+y^3 -3xy help me plz

  • This Question is Closed
  1. anonymous
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    The critical point of a funtion in 3-D space is where the tangent plane is horizontal. Perceive that the slopes of the partial derivatives at this critical point are both zero (they are both horizontal). So, let's call fy the partial derivative of f with respect to y. fx the partial derivative of f with respect to x. fy = 3y^2 -3x fx = 3x^2 -3y Sum the two equations so you can simplify things : 3y^2 + 3x^2 -3x -3y = 0 3(y^2 + x^2 - x - y) = 0 y^2 + x^2 - x - y = 0 y^2 + x^2 = y + x The unique numbers that squared and summed are equal to them summed are (0,1), (1,0), (1,1), (0,0) now you just have to plug in these numbers into the function and see when you get the smaller or the larger. Ok ?

  2. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.