• anonymous
I finally published my chrome extension. What it does: -Adds a button 'Notebook' next to 'Draw' button to open up notebook -You can store pieces of text (notes) in your notebook. -You can search your notebook for a particular note. -You can insert the note into the reply. -You can import and export your notebook, to back it up or share with others. Where to get it: https://chrome.google.com/webstore/detail/open-study-notebook/nmdboeolmlhaaepahmeklccofcbbmpdc Filling up notebook: Notebooks start out with only one benign note. You can import what I have in my notebook if you'd like:  [{"title":"Welcome","body":"Thank you for using the OpenStudy notebook extension."},{"title":"Slope Point Formula","body":"The equation of a line with slope \$$m\$$ that goes through the point \$$(x_0,y_0)\$$ is given by: \$\ny-y_0 = m (x-x_0)\n\$"},{"title":"Tangent Line Formula","body":"The equation of the tangent line to a function \$$f(x)\$$ at \$$x_0\$$ is given by: \$\ny-f(x_0) = f'(x_0) (x-x_0)\n\$"},{"title":"Definition of the Derivative","body":"The derivative of a function \$$f(x)\$$ is defined as: \$\nf'(x) = \\lim_{h\\to 0}\\frac{f(x+h)-f(x)}{h}\n\$"},{"title":"Definition of the Limit","body":"The limit: \$\n\\lim_{x\\to a}f(x) = L\n\$Is defined as: \$\n\\forall \\epsilon\\; \\exists \\delta\\;\\\\\n\\forall x\\quad 0<|x-a|<\\delta \\implies |f(x)-L|<\\epsilon\n\$That is: \nIf I come up with an \$$\\epsilon\$$ you will always be able to give me a \$$\\delta\$$ such that\nWhenever \$$x\$$ within your \$$\\delta\$$ range, \$$f(x)\$$ will be be within my \\(\\epsilo...n(x^n)' &=&nx^{n-1}\\\\\n(e^x)'&=& e^x\\\\\n(a^x)'&=& a^x\\ln(a)\\\\\n(\\ln(x))'&=& \\frac{1}{x}\\\\\n(\\sin(x))'&=& \\cos(x)\\\\\n(\\cos(x))'&=& -\\sin(x)\\\\\n(\\tan(x))'&=& \\sec^2(x)\\\\\n(\\sec(x))'&=& \\sec(x)\\tan(x)\\\\\n(\\csc(x))'&=& -\\csc(x)\\cot(x)\\\\\n(\\cot(x))'&=& -\\csc^2(x)\\\\\n\\end{array}\n\\]"},{"title":"Heaviside Function","body":"The Heaviside unit step function is defined as: \$\nH(x)=\\begin{cases}\n0&x<0\\\\\n1&x>0\n\\end{cases}\n\$A piecewise function can be converted to a non-piecewise using it:\n\$\n\\begin{cases}\nf(x)&xc\n\\end{cases}\n\\quad =\\quad f(x)+[g(x)-f(x)]H(x-c)\n\$\nProof: \$\n\\begin{split}\n&\\begin{cases}\nf(x)&xc\n\\end{cases}\\\\\n=&\nf(x) +\n\\begin{cases}\n0&xc\n\\end{cases}\\\\\n=&\nf(x) +\n(g(x)-f(x))\\begin{cases}\n0&xc\n\\end{cases}\\\\\n=&\nf(x) +\n(g(x)-f(x))\\begin{cases}\n0&x-c<0\\\\\n1&x-c>0\n\\end{cases}\\\\\n=&f(x)+[g(x)-f(x)]H(x-c)\n\\end{split}\n\$"}]  Where are notes stored? Notes are stored in a JSON array using localStorage. If you delete your localStorage without backing up your notebook, then all the notes will be gone. Firefox/Other Browsers: I dunno if I'll make a version for other browsers, because I don't really use them. You're welcome to make look at my code and make your own version. GitHub: The code is open source, so you can look at it anytime you want. https://github.com/wiogit/OpenStudyNotebook
OpenStudy Feedback
• Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Looking for something else?

Not the answer you are looking for? Search for more explanations.