Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Can someone help me with this radical?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

\[\frac{ 7 }{ \sqrt{45} }\]
hmmm
maybe before you do that, note that \(45=9\times 5\) and so \(\sqrt{45}=\sqrt{9\times 5}=\sqrt{9}\sqrt{5}=3\sqrt{5}\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

then \[\frac{ 7 }{ \sqrt{45} }=\frac{7}{3\sqrt{5}}\]and now you only need to multiply top and bottom by \(\sqrt{5}\) to remove the radical from the denominator
@julia_copen you got this or you need the steps?
Steps please.
lets start with \[\frac{7}{3\sqrt{5}}\] your job is to get the radical out of the denominator, so multiply top and bottom by \(\sqrt 5\) you get \[\frac{7}{3\sqrt{5}}\times \frac{\sqrt{5}}{\sqrt{5}}=\frac{\sqrt{5}}{3\sqrt{5}\sqrt{5}}=\frac{7\sqrt{5}}{3\times 5}\]
typo there, meant \[\frac{7}{3\sqrt{5}}\times \frac{\sqrt{5}}{\sqrt{5}}=\frac{7\sqrt{5}}{3\sqrt{5}\sqrt{5}}=\frac{7\sqrt{5}}{3\times 5}\]
final answer is \(\frac{7\sqrt{5}}{15}\)
another quick example \[\frac{4}{\sqrt{3}}=\frac{4}{\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}}=\frac{4\sqrt{3}}{3}\]
Thanks so much! Me and my friend were having a hard time trying to understand how to break it down.
yw
can you help me with another?
sure
\[\frac{ 1 }{ \sqrt{75z} }\]
is the \(z\) inside the radical?
yes
ok the idea is to see if the number is the product of some "perfect square" so in this case \(75=25\times 3\) making \[\sqrt{75}=\sqrt{25}\sqrt{3}=5\sqrt{3}\] so star with \[\frac{1}{5\sqrt{3z}}\] and then multiply top and bottom by \(\sqrt{3z}\)
you get \[\frac{1}{5\sqrt{3z}}\times \frac{\sqrt{3z}}{\sqrt{3z}}=\frac{\sqrt{3z}}{15z}\]
Okay I see. It's always difficult in the beginning for me.
you will get used to it, (and then probably forget it because it is not really that useful) but in any case it gets easier
Are you still on?

Not the answer you are looking for?

Search for more explanations.

Ask your own question