ParthKohli
  • ParthKohli
What are the roots of \(y = x^2\)?
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

goformit100
  • goformit100
|dw:1364477055858:dw||dw:1364477070806:dw|
ParthKohli
  • ParthKohli
A friend of mine suggests that people don't think that zero is a real solution.
Mertsj
  • Mertsj
The roots are the x intercepts. Set y to 0 and you will see that x=0 is a double root which indicates a point of tangency to the x axis at x = 0

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mertsj
  • Mertsj
People can think whatever they want. Doesn't make it true.
ParthKohli
  • ParthKohli
\[x^2 = 0 \implies x = 0\]
goformit100
  • goformit100
You friend is a crazy guy.
ParthKohli
  • ParthKohli
OK, thank you!
Mertsj
  • Mertsj
|dw:1364476304306:dw|
Mertsj
  • Mertsj
yw
ParthKohli
  • ParthKohli
Thanks, enough to explain.
UnkleRhaukus
  • UnkleRhaukus
\[y=x^2\]\[x^2-y=0\]\[x_{1,2}=\frac{0\pm\sqrt{0^2-4(1)(-y)}}{2(1)}\\=\frac{\pm\sqrt{4y}}{2}\\ =\pm \sqrt y\]
ParthKohli
  • ParthKohli
Nice solution, but by "roots", I meant zeroes :-)
UnkleRhaukus
  • UnkleRhaukus
\[0=\pm\sqrt0\]
ParthKohli
  • ParthKohli
Ah, lol!

Looking for something else?

Not the answer you are looking for? Search for more explanations.