anonymous
  • anonymous
Can you guys help me with this problem please?
Linear Algebra
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

goformit100
  • goformit100
Never .... it's because you haven't posted your question yet. .... just kidding
goformit100
  • goformit100
@ParthKohli
ParthKohli
  • ParthKohli
Linear algebra? No, I can't help.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Let \[T:P _{2}->P _{2}\] and \[S:P _{2}->P _{2}\] where \[P _{2}=({ax^2+bx+c | a,b,c \in \mathbb{R}})\]. If\[M _{B}^{A}(T)=\left[\begin{matrix}0 & 2 &-3 \\ 0 & -1/2 & 0 \\-2 &0 &0\end{matrix}\right]\] is the associated matrix to T referred to the bases \[A=\left\{ 2x^2,x-1,3 \right\}\] of the domain and \[B=\left\{ 1,2x,x^2 \right\}\] of the codomain and \[M _{B}^{A}(SoT)=\left[\begin{matrix}0 & 4 &-3 \\ 2 & -1/2 & 0 \\-2 &0 &0\end{matrix}\right]\] the associated matrix to SoT
anonymous
  • anonymous
a) Find \[M _{B}^{A}(S)\] b)Determine the rule for SoT
anonymous
  • anonymous
I've already found b) but i can't figure out how to get a)
anonymous
  • anonymous
@goformit100 yeah, it took me forever to write all that xD
anonymous
  • anonymous
Do you understand the question @Kikazo ?
anonymous
  • anonymous
Yes, the question is to find the matrix associated with the linear transformation S, referred to bases A and B @wio

Looking for something else?

Not the answer you are looking for? Search for more explanations.