• anonymous
This is not a question, but I'm answering myself to show how powerseries and differentiation works.
OCW Scholar - Single Variable Calculus
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • anonymous
If we assume that every differentiable function can be expressed in a power series:\[\sum_{n=0}^{\infty}a_{n}x^{n}\]and we know that\[\frac{ dy }{ dx }x^n=nx ^{n-1}\]Then if we try to find the function f(x) that folowes the rule that f'(x)=f(x) and f(0) =1 we can show that for the power series expansion for that function:\[\frac{ d }{ dx }\sum_{n=0}^{\infty}a _{n}x ^{n}=\sum_{n=0}^{\infty}na _{n}x ^{n-1}\]And as these should be equal then\[a _{n-1}x ^{n-1}= na _{n}x ^{n-1} \rightarrow a _{n-1} =n a _{n}\rightarrow a _{n}=\frac{ a _{n-1} }{ n }\]So because a(0) must be 1 so that f(0) can be 1 we get\[a_{1}=\frac{ 1 }{ 1 }, a _{2}=\frac{ 1 }{ 1*2 }, a _{3}=\frac{ 1 }{ 1*2*3 },...a _{n}=\frac{ 1 }{ 1*2*3,....,*n }\] So the function were after is\[f(x) =\sum_{n=0}^{\infty}\frac{ x^n }{ n! }\]Unfortunately this does not tell you what that funcion is, but it still tells you it's the function that is it's own derivative. So if you find a function that is it's own derivative then this is it's powerseries expansion.

Looking for something else?

Not the answer you are looking for? Search for more explanations.