Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Given: a = 8, b = 6, Angle C = 60 Angle A = 14° 46° 74° 106°

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

  • phi
we could use the law of cosines to find side c, and then the law of sines to find angle A
i The only angle you are given is C, so use c^2 = a^2 + b^2 - 2abcosC...now substitute
Would you use the formula a^2=b^2+c^2-2bcCosA

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes
okay thanks ill try
okay
  • phi
This is a 2 step problem. find side c using \[ c^2 = a^2 + b^2 - 2\ a\ b \cos(C) \] after you find c, you can use the Law of Sines \[ \frac{\sin A}{a}= \frac{\sin C}{c} \]
okay thanks

Not the answer you are looking for?

Search for more explanations.

Ask your own question