Help

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

huh?
Is this a medical emergency? If so, please call your local emergency number.
it's math emergency

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

wats ur question?
These are the pictures that I've uploaded for my question
oh glob, sorry i cant help, thats too hard, bye. :)
I vaguely remember doing this, but I think you want to use the exponential form of cosh and sinh to prove it.
Yeah, noob google series expansion of hyperbolic cosine and sine
So sin z is equal to some summation. You multiply it by i. Work out a few terms in the summation making sure to remember that i^2=-1 and try to simplify it to look like the sinh z formula.
how about first one??
For -1 < p < 1 prove that \[\sum_{n=0 }^{\infty} p^{n}\cos nx =\frac{ 1= pcos x }{ 1-2pcosx + p^2 }\]
bleh too much effort

Not the answer you are looking for?

Search for more explanations.

Ask your own question