waheguru
  • waheguru
Can someone explain this please What will the point (-3, 9) from the base parabola, be transformed to after: A vertical stretch by a factor of 2: Followed by a vertical reflection: Followed by a horizontal translation of 4 units to the right: Followed by a vertical translation of 2 units up: What will the equation be?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
waheguru
  • waheguru
This is quadratics
zepdrix
  • zepdrix
So we start with the function, the base parabola, \(\large y=x^2\) Stretching it by a factor of 2, \(\large y=2x^2\) Then reflecting it vertically, \(\large y=-2x^2\) Then a horizontal shift to the RIGHT 4 units, \(\large y=-2(x-4)^2\) Then finally, a vertical shift UP 2 units, \(\large y=-2(x-4)^2+2\)
waheguru
  • waheguru
but the question says what will the point (-3,9) be ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

zepdrix
  • zepdrix
So there is the equation. Let's see if we can figure out where (-3,9) moves to.. hmm :\
waheguru
  • waheguru
Is the question asking us to make an equation using the points -3, 9 or without the points
zepdrix
  • zepdrix
The last part says "What will the equation be?" That's the part we've determined already. It doesn't involve the point (-3,9). I'm not exactly sure how they want us to do that first part. It seems the question wants to know where that point would be on our new parabola, relative to it's location on the old one. We've stretched it, and moved things around .. I'm not sure how we would determine that :O Hmm
zepdrix
  • zepdrix
I guess we could measure from 3 units left of the vertex of our new parabola, and determine the function value it gives us. \(\large f(x)=-2(x-4)^2+2\) Our function has a vertex at \(\large (4,2)\). So three units left of that would be at x=1. \(\large f(1)=-2(1-4)^2+2\) And this should tell us where that point now lies. I think...
zepdrix
  • zepdrix
Hmm kinda confusing though XD maybe there's a simpler way to do that.
waheguru
  • waheguru
Thats fine Ill check with my teacher

Looking for something else?

Not the answer you are looking for? Search for more explanations.