anonymous
  • anonymous
Find the inverse of the function f(x)=x^{2}-8x+4, where <4. State its domain.
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[where x \le 4\]
anonymous
  • anonymous
@hartnn
hartnn
  • hartnn
can you complete the square ? know how to ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hartnn
  • hartnn
\(f(x)=x^2-8x+4= (x-...)^2-...\)
anonymous
  • anonymous
so the answer is inversef(x)=4+sqrt{x+12} . domain is x bigger or equal -12 ?
hartnn
  • hartnn
to be more precise, \(f^{-1}(x)=4\pm \sqrt{x+12} \) the domain \(x \ge -12 \) is correct.
hartnn
  • hartnn
wait, its given that x<4
hartnn
  • hartnn
so, it'll be only \(f^{-1}(x)=4 - \sqrt{x+12}\) with same domain.
anonymous
  • anonymous
how can we understand that it is minus when x<4 ?
hartnn
  • hartnn
4+ anything means >4 4- anything means <4
hartnn
  • hartnn
does that clear it up ? or you have different doubt altogether ? :P
anonymous
  • anonymous
a little bit :D because it tells about x but we take the function <4 :/
hartnn
  • hartnn
oh, .... domain of f(x) means range of its inverse function \(f^{-1}(x)\) here, x<4 is domain of f(x), so range of \(f^{-1}(x)\) is x<4 , means \(f^{-1}(x)\) has least value of 4, so we discard 4+sqrt {x+12} because that will be >4
hartnn
  • hartnn
***range of \(f^{-1}(x)\) is \(f^{-1}(x)\)<4
hartnn
  • hartnn
***maximum value of 4
hartnn
  • hartnn
sorry for the typos.
anonymous
  • anonymous
oh. okey. thank youu :)
hartnn
  • hartnn
welcome ^_^

Looking for something else?

Not the answer you are looking for? Search for more explanations.