El_Tucan
  • El_Tucan
what is the first step in finding the first derivative using logarithmic differentiation for y = (cos x)^(sin x)?
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Isn't you have to move sin(x) like this => y = sin(x)ln(cos(x))?
amistre64
  • amistre64
almost, the first step is to just log each side
anonymous
  • anonymous
yes, i know

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[y=(\cos x)^{\sin x}\] take a logarithm on the both sides
amistre64
  • amistre64
ln(y) = sin(x) ln(cos(x))
anonymous
  • anonymous
then take derivative both side sin = cos and cos = -sin
El_Tucan
  • El_Tucan
right right right! :)
El_Tucan
  • El_Tucan
just for referance
amistre64
  • amistre64
i think you dropped a negative on the ln cosx chain
amistre64
  • amistre64
\[sin(x)~ln(cos(x))\] \[cos(x)~ln(cos(x))+sin(x)~\frac{-sin(x)}{cos(x)}\] \[cos(x)~ln(cos(x))-sin^2(x)~\frac{1}{cos(x)}\]
amistre64
  • amistre64
or you might have just went another way to get to the same thing :)
amistre64
  • amistre64
the end result looks fine tho.
El_Tucan
  • El_Tucan
thanks huh
El_Tucan
  • El_Tucan
:) i love open study

Looking for something else?

Not the answer you are looking for? Search for more explanations.