Determine whether the sequence converges or diverges. If it converges, give the limit.? 60, -10, 5/3, -5/18,

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Determine whether the sequence converges or diverges. If it converges, give the limit.? 60, -10, 5/3, -5/18,

Precalculus
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

seems like it converges to 0
@Kanwar245 How do you know that?
@Kanwar245 Umm, it is being added to by a value that is larger than it is being subtracted by, so why would it converge at 0 rather than diverge or converge at some point larger than 0?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The fraction looks like it will eventually be a small over large, so 0. That implies it should converge. The rest is finding the limit. Have you tried this reference for the topic? http://tutorial.math.lamar.edu/Classes/CalcII/ConvergenceOfSeries.aspx

Not the answer you are looking for?

Search for more explanations.

Ask your own question