Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

LeventAChaves

How can i remember all trig functions and their identities? I mean, its easy to remember what sin, cos, tan are but with cosecant, secant, cotangent, arccosine, arcsine, arctan i cant remember their derivatives and identities. Can you please give some advice? Thank you very much.

  • one year ago
  • one year ago

  • This Question is Open
  1. Topi
    Best Response
    You've already chosen the best response.
    Medals 1

    I don't bother to remember others that sin, cos and tan including their inverses. IMHO secant and cosecant are totally useless and cotangent is only needed when tangent approaches infinity. What comes to the derivatives one only must remember that cosine starts as decreasing. So:\[\frac{ d }{ dx }\sin x = \cos x, \frac{ d }{ dx }\cos x = -\sin x\]One can either remember tangent's derivative one or the other way:\[\frac{ d }{ dx }\tan x = 1+\tan^2x=\frac{ 1 }{ \cos^2x }\]But these can be derived from each other:\[\frac{ 1 }{ \cos^2x }=\frac{ (\cos^2x+\sin^2x) }{ \cos^2x }=1+\frac{ \sin^2x }{ \cos^2x }=1+\tan^2x\]The derivatives of the arccusfunctions can be calculated by the identity:\[\frac{ dy }{ dx }=\frac{ 1 }{ \frac{ dx }{ dy } }\]So we can easily see from the equation\[\frac{ d }{ dx }\tan x = 1+\tan^2x\] that\[\frac{ d }{ dx }\arctan x = \frac{ 1 }{1+x^2 }\]and because\[\sin^2x+\cos^2x=1\]that\[\frac{ d }{ dx }\arcsin x=\frac{ 1 }{ \sqrt{1-x^2} }, \frac{ d }{ dx }\arccos x=\frac{ -1 }{ \sqrt{1-x^2} }\]Hope that helped.

    • one year ago
  2. alffer1
    Best Response
    You've already chosen the best response.
    Medals 0

    It's just a question of practice. Remember that sin^2 x + cos^2 x = 1, then you can easily derive that sec^2 = 1+tan^2 and csc^2 = 1+ cot^2x. That's for the Pythagorean identities. Topi wrote a great explanation of the derivatives.

    • 9 months ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.