MoonlitFate
  • MoonlitFate
Use the Fundamental Theorem of Calculus to determine the answer to the problem; do not use the even/odd properties of integration.
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
56665
MoonlitFate
  • MoonlitFate
Problem is: \[\int\limits_{-\frac{ \pi }{ 2 }}^{\frac{ \pi }{ 2 }}(\sin^3x \cos x+\sin x \cos x)dx\]
anonymous
  • anonymous
\[\sin ^{2} x is meant (\sin(x))^{2}\] so you are using quotient rule for sin square. and cos x anti-derivative was sin x

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Then plug pi/2 and - pi/2 in the equation
anonymous
  • anonymous
Then take the number when you plug pi/2 subtract the number when you plug -pi/2 and get the answer
anonymous
  • anonymous
Hope this help
stamp
  • stamp
@MoonlitFate find the integral using u substitution (see attachment)
1 Attachment
stamp
  • stamp
then evaluate the integral from b to a (see attachment 2) verification of answer @ http://www.wolframalpha.com/input/?i=integral+of+sin^3xcosx%2Bsinxcosx+from+-pi%2F2+to+pi%2F2
1 Attachment

Looking for something else?

Not the answer you are looking for? Search for more explanations.