Got Homework?
Connect with other students for help. It's a free community.
Here's the question you clicked on:
 0 viewing
kcla1996
Group Title
Given a regular octagon, find the measures of the angles formed by (a) two consecutive radii and (b) a radius and a side of the polygon.
A. 72°; 252°
B. 36°; 216°
C. 45°; 67.5°
D. 40°; 230°
 one year ago
 one year ago
kcla1996 Group Title
Given a regular octagon, find the measures of the angles formed by (a) two consecutive radii and (b) a radius and a side of the polygon. A. 72°; 252° B. 36°; 216° C. 45°; 67.5° D. 40°; 230°
 one year ago
 one year ago

This Question is Closed

Directrix Group TitleBest ResponseYou've already chosen the best response.0
@kcla1996 Circles can be circumscribed about and inscribed regular polygons. Hence, some of the terminology associated with circles turns up in the study of regular polygons.
 one year ago

Directrix Group TitleBest ResponseYou've already chosen the best response.0
The radius of a regular octagon is the radiusof the circle that can be circumscribed about it. On the attached figure above, you see <1 as an angle formed by consecutive radii. A complete circle rotations is 360 degrees and there are 8 central angles, all congruent. So angle 1 has measure 360/8 = ?
 one year ago

Directrix Group TitleBest ResponseYou've already chosen the best response.0
Once you get the measure of angle 1, then the angle formed by a radius and a side of the octagon is one of the two base angles of the isosceles triangle of which angle 1 is the vertex angle. Recall that the sum of the angle measures of a triangle is 180 and that base angles of an isosceles triangle are congruent and you will have the angle for part b.
 one year ago
See more questions >>>
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.