.Sam.
  • .Sam.
@tanvidais13
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
.Sam.
  • .Sam.
Your question \[\int\limits \frac{7}{\sqrt{5+4x-x^2}}\] Try completing the square @tanvidais13
anonymous
  • anonymous
wait i don't need to, its factorizable: \[7/\sqrt{(1+x)(5-x)}\]
.Sam.
  • .Sam.
no you can't do that because we can't use partial fractions here

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
so we need to complete the square, or do a substitution?
.Sam.
  • .Sam.
We can try using trig substitution, it might work, so if we complete the square then we got \[\int\limits\limits \frac{7}{\sqrt{9-(x-2)^2}} \, dx\] Put it like this, \[\int\limits\limits\limits \frac{7}{\sqrt{3^2-(x-2)^2}} \, dx\] Using trig sub, \[x=asin(\theta), \text{while} ~~~~~ a^2-x^2 ~~~~~ \text{is} ~~~~~ 3^2-(x-2)^2, \\ \\So \\ \\------------\\\\ x-2=3\sin(\theta) ~~~~~ \theta=\sin^{-1}(\frac{x}{3}) \\ \\ dx=3\cos (\theta) d \theta \\\\-----------\\\\ 7 \int\limits \frac{3\cos \theta}{\sqrt{3^2-(3\sin \theta)^2}}d \theta\]
.Sam.
  • .Sam.
\[7 \int\limits \frac{3\cos \theta}{\sqrt{3^2(1-\sin^2 \theta)}}d \theta \\ \\ \text{We know that} \sqrt{ab}=\sqrt{a} \sqrt{b}\\ \\ 7 \int\limits \frac{\cos \theta}{\sqrt{(1-\sin^2 \theta)}}d \theta \\ \\ 7 \int\limits \frac{\cos \theta}{\sqrt{\cos^2 \theta}}d \theta \\ \\7 \int\limits 1 d \theta\]
.Sam.
  • .Sam.
\[7 \theta +c \\ \\ 7\sin^{-1}(\frac{x-2}{3}) +c\]
.Sam.
  • .Sam.
Note that theta is\[\theta=\sin^{-1}(\frac{u}{3})\] and u=x-2
.Sam.
  • .Sam.
@tanvidais13 Both completing the square and substitution needed
anonymous
  • anonymous
I love you, you are a life saver. Really.
.Sam.
  • .Sam.
Welcome :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.