Using residu theorem, calculate integral

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Using residu theorem, calculate integral

Geometry
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Using residu theorem, calculate: \[\int\limits_{0}^{\infty} \frac{ \cos 2x }{ 9 x^{2} + 4} dx \]
i vaguely remember it is \(2\pi \sum\text{residues}\)
actually \(2\pi i\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

now how to compute the residues... zeros of the denominator are \(\frac{2}{3}i\) and \(-\frac{2}{3}i\)
The residue theorem allows us to compute a contour integral using only the values of teh residues, more precisely:$$\oint_\gamma f(z)\mathrm{d}z=2\pi i+\sum_k\operatorname{Res}(f,a_k)$$ where \(a_k\) is the \(k\)-th residue.
@satellite73 is correct so far; our denominator factors like \(9x^2+4=(3x+2i)(3x-2i)\) so we have poles at \(x=\pm\frac23i\).
correct me if i am wrong but to find the residue of a simple pole, is it not the derivative evaluated at the singularity? it has been a while
OOPS I meant \(2\pi i\sum_k\operatorname{Res}(f,a_k)\) -- a product, not a sum. Note we're dealing with an analytic continuation of our integrand in the complex plane, \(f(z)=\frac{\cos2z}{9z^2+4}\). Both of these poles are *simple* (order 1), so we may compute their residues as follows.$$\operatorname{Res}\left(f,\frac23i\right)=\lim_{z\to\frac23i}\left(z-\frac23i\right)f(z)=\lim_{z\to\frac23i}\frac{\cos2z}{3(3z+2i)}=\frac{\cos\frac23i}{12i}$$
$$\operatorname{Res}\left(f,-\frac23i\right)=\frac{\cos\left(-\frac43i\right)}{-12i}=\frac{i}{12}\cos\frac43i$$Our other residue simplifies similarly$$\operatorname{Res}\left(f,\frac23i\right)=\frac{\cos\frac43i}{12i}=-\frac{i}{12}\cos\frac43i$$
Okay, sorry. So recognize that our function is even, and thus \(\int_0^\infty f(x)\mathrm{d}x=\frac12\int_{-\infty}^\infty f(x)\mathrm{d}x\). The reasoning for this is that it is for our makes for a simple contour. We know our (new) integral can then be rewritten as follows.$$\int_{-\infty}^\infty f(x)\mathrm{d}x=\lim_{a\to\infty}\int_{-a}^af(x)\mathrm{d}x$$ Our definite integral inside our limit is equivalent to a contour integral of our analytic continuation \(f(z)\) along the real line from \(-a\) to \(a\).|dw:1365731595204:dw|Notice that we may draw a counterclockwise arc from \(-a\) to \(a\) so that we have a semicircle:|dw:1365731697019:dw|
and then ?
We're going to let \(a>\frac23\) so that our semicircle (which I will denote \(\gamma\)) encloses one of our simple poles in its interior, \(\frac23i\). Thus we can determine the contour integral along \(\gamma\) using Cauchy's residue theorem:$$\oint_\gamma f(z)\,\mathrm{d}z=2\pi i\left(-\frac{i}{12}\cos\left(\frac43i\right)\right)=\frac\pi6\cos\left(\frac43i\right)$$Now recognize that our semicircle \(\gamma\) may be broken into \(\gamma_1\) and \(\gamma_2\), our segment of the real line and our arc, respectively. It then follows that$$\oint_\gamma f(z)\,\mathrm{d}z=\oint_{\gamma_1} f(z)\,\mathrm{d}z+\oint_{\gamma_2} f(z)\,\mathrm{d}z$$Recalling that \(\oint_{\gamma_1}f(z)\,\mathrm{d}z=\int_{-a}^af(x)\mathrm{d}x\) and using our result using residues for \(\oint_\gamma f(z)\,\mathrm{d}z\), we have$$\int_{-a}^af(x)\,\mathrm{d}x=\frac\pi6\cos\left(\frac43i\right)-\oint_{\gamma_2}f(z)\,\mathrm{d}z$$
Now let us consider \(\oint_{\gamma_2}f(z)\,\mathrm{d}z\) and look to the estimation lemma (http://en.wikipedia.org/wiki/Estimation_lemma) for some help. Intuitively, we seek an upper-bound \(M\) on \(|f(z)|\) for all \(z\) along \(\gamma_2\) so that we may conclude \(|\oint_{\gamma_2}f(z)\,\mathrm{d}z|\le M\pi a \) where \(\pi a\) is te length of our arc, one-half the circumference of a circle with radius \(a\).
hm, I'll admit I'm having a bit of trouble determining \(M\)... but once you do, you show that \(\lim_{a\to\infty}\oint_{\gamma_2}f(z)\mathrm{d}z\) converges to some number so that we may get an expression for \(\int_{-\infty}^{\infty}f(x)\,\mathrm{d}x\) and thus for \(\int_0^\infty f(x)\mathrm{d}x\).
OOPS! I did my analytic continuation incorrect. Recognize \(\Re\{e^{2ix}\}=\cos 2x\), which means our extension should have been \(f(z)=\frac{e^{2iz}}{9z^2+4}\), so our residue is actually$$\frac{e^{-\frac43}}{12i}=-\frac{i}{12}e^{-\frac43}$$and thus$$\oint_\gamma f(z)\,\mathrm{d}z=2\pi i\times-\frac{i}{12}e^{-\frac43}=\frac\pi6e^{-\frac43}$$ Our bound is also now trivial, since \(|e^{2iz}|\le1,\,|z|=a\) and thus $$\left|\frac{e^{2ix}}{9z^2+4}\right|\le\frac1{9|z|^2-4}=\frac1{9a-4}$$ so we may let \(M=\frac1{9a-4}\) along \(\gamma_2\). The estimation lemma then tells us$$\left|\oint_{\gamma_2}f(z)\,\mathrm{d}z\right|\le\frac{\pi a}{9a^2-4}$$ We notice that as \(a\to\infty\), \(\frac{\pi a}{9a^2-4}\to0\) and therefore \(\oint_{\gamma_2}f(z)\,\mathrm{d}z\to0\). Thus we have $$\int_{-\infty}^\infty f(x)\,\mathrm{d}x=\frac\pi6e^{-\frac43}$$and therefore$$\int_0^\infty f(x)\,\mathrm{d}x=\frac\pi{12}e^{-\frac43}$$
Oops, I meant \(1/(9a^2-4)\) not \(1/(9a-4)\).
sorry about that all, I've never taken a complex analysis course since I'm still in high school so I had to try to piece together what I've learned from the Internet over the years. I can try to rewrite my answer in a more clear form if you'd like!
why the residu is \(\frac{ e^{-4/3} }{ 12i } \) ???
ok thank you so much @oldrin.bataku :)
@gerryliyana our residue is \(\frac1{12i}e^{-\frac43}\) and determined as follows:$$\begin{align*}\operatorname{Res}\left(f,\frac23i\right)&=\lim_{z\to\frac23i}\frac{e^{2iz}}{9z^2+4}\cdot\left(z-\frac23i\right)\\&=\lim_{z\to\frac23i}\frac{e^{2iz}}{(3z+2i)(3z-2i)}\cdot\left(z-\frac23i\right)\\&=\lim_{z\to\frac23i}\frac{e^{2iz}}{3(z-\frac23i)(3z-2i)}\cdot\left(z-\frac23i\right)\\&=\lim_{z\to\frac23i}\frac{e^{2iz}}{3(3z-2i)}\\&=\frac{e^{2i\cdot\frac23i}}{3(3\cdot\frac23i-2i)}\\&=\frac{e^{\frac43i^2}}{3(-4i)}\\&=\frac{e^{-\frac43}}{12i}\end{align*}$$
Oops, I broke that derivation. It's supposed to end up cancelling \(z-\frac23i\) to yield \(3(3z+2i)\) in the denominator, which then reduces to \(3(3\cdot\frac23i+2i)=3(4i)=12i\) -- no negative there.
ok., thank you so much @oldrin.bataku :)...,
@oldrin.bataku , i've tried... \[\int\limits \frac{ e^{i2z} }{ 9z^{2}+4 } =-2 \pi i \alpha_{-1}\] \[f(z) \frac{ e^{i2z} }{ (z+i \frac{ 2 }{ 3 })(z-i \frac{ 2 }{ 3 }) } \] where \((z+i \frac{ 2 }{ 3 })(z-i \frac{ 2 }{ 3 }) \) is simply pole of singularity., then the residu is \[\alpha_{-1} = \lim_{z \rightarrow i \frac{ 2 }{ 3 }} (z - i \frac{ 2 }{ 3 }) f(z)\] \[\alpha_{-1} = \frac{ 1 }{ (m-1) !} \frac{ d^{m-1} }{ dz^{m-1} }\left[ (z-z_{o})^{m} f(z) \right]_{z=z_{o}} ::::>> m = 1\] \[\alpha_{-1} = \left[ (z-z_{o})f(z) \right]_{z=z_{o}} \] \[\alpha_{-1} = \lim_{z \rightarrow i \frac{ 2 }{ 3 }} (z-i \frac{ 2 }{ 3 }) \frac{ e^{i2z} }{ (z+i \frac{ 2 }{ 3 } )(z-i \frac{ 2 }{ 3 }) }\] \[\alpha_{-1} \lim_{z \rightarrow i \frac{ 2 }{ 3 }} \frac{ e^{i2z} }{ z+i \frac{ 2 }{ 3 } } = \frac{ e^{-4/3} }{ i \frac{ 4 }{ 3 } } \frac{ i }{ i} = -i \frac{ 3 }{ 4 } e^{-4/3}\] then \[\int\limits_{C_{4}} \frac{ e^{i2z} }{ 9z^{2}+4 } dz = -2 \pi i (-1) \frac{ 3 }{ 4 } e^{-4/3} = -\frac{ 3 }{ 2 } \pi e^{-4/3} \] \[\int\limits_{-\infty}^{\infty} \frac{ (\cos 2x + i \sin 2x)}{ 9x^{2}+4 } dx = \frac{ 3 }{ 2} \pi e^{-4/3}\] \[2 \int\limits_{0}^{\infty} \frac{ \cos 2x }{ 9x^{2}+4 } dx = \frac{ 3 }{ 2 } \pi e^{-4/3}\] \[\int\limits_{0}^{\infty} \frac{ \cos 2x }{ 9x^{2} + 4 } dx = \frac{ 3 }{ 4 } \pi e^{-4/3} \]
Your denominator for your residue calculations is wrong. $$9z^2+4=9z^2-(-4)=(3z+2i)(3z-2i)=9\left(z+\frac23i\right)\left(z-\frac23i\right)$$Don't forget the \(9\) mate.
though +1 for avoiding to explicitly need any estimates... I really should've remembered that \(\sin z\) is even... :-)
how if i |dw:1366116750127:dw|
You only want either semicircle.
|dw:1366118390489:dw| Yes.., if i take countour an upper half plane to the singularity at z - i 2/3 \[\int\limits_{C_{1}+C_{2}+C_{3}+C_{4}} f(z) dz = 0\]
\[I_{C_{4}} I (R,\theta) \] \[\lim_{R \rightarrow \infty} I (R,\theta) = 0 ==> Jordan's lemma\] \[\int\limits_{C_{1}+C_{2}+C_{3}+C_{4}} f(z) dz = 0\] \[f(z) = \frac{ e^{2iz} }{ z-i \frac{ 2 }{ 3 } }\] \[\int\limits_{C_{1}} + \int\limits_{C_{2}} + \int\limits_{C_{3}} + \int\limits_{C_{4}} \frac{ e^{2iz} }{ (9z^{2} +4)} dz = 0\] \[\int\limits_{-\infty}^{0} \frac{ f(z) }{ (....) } dz + \int\limits_{0}^{\infty} \frac{ f(z) }{ (....) } dz + \int\limits_{C_{2}} \frac{ f(z) }{ (.....) } dz = 0\] then \[\int\limits_{-\infty}^{\infty} \frac{ e^{i2z} }{ 9z^{2}+4 } dz = -\int\limits_{C_{1}} \frac{ e^{2iz} }{ 9z^{2} +4} dz = - \int\limits \frac{ e^{2iz} }{ 9z^{2}+4 } dz\]
@oldrin.bataku correct me if i wrong..., i just wanna try with another way
@oldrin.bataku still here ??

Not the answer you are looking for?

Search for more explanations.

Ask your own question