Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Show that

Collaborative Statistics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
Show that: \[|cosz|^{2}= \cos^{2}x+\sinh^{2}x\] Hint: using \[\cos z = \frac{ e^{iz} + e^{-iz}}{ 2 }\] \[\sin z = \frac{ e^{iz} - e ^{-iz} }{ 2i }\] \[\cosh z = \frac{ e^{z}+e^{-iz} }{ 2 }\] \[\sinh z = \frac{ e^{z} - e^{-z} }{ 2 }\]
Sorry I MEAN, show that \[|\cos z|^{2} = \cos^{2} x + \sinh^{2}y\]
would you kindly help me again @niksva ??

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Take LHS first (cosz)^2 replace z with x +iy cos(x+iy) = cos(x)cos(iy) - sin(x)sin(iy)
as cos(iy) = coshy and sin(iy) =i sinhy therefore cosz = cos(x)cos(hy)-i sin(x)sin(hy)
@gerryliyana after squaring and applying (a-b)^2 formula , the equation become difficult to solve
i've tried.., but didn't match,
how did u approach the problem?
using hint above..., i tried, one by one.., hbu?? it's make sense ?
how can u apply above hint in RHS?
what the next ??
my ques is as z = x + iy where x is real number and y is imaginary number can we write cosx= (e^ix+ e^-ix)/2 ???????/ according to me, we cannot write this as x is a real number
\[\Large{ \cos z={e^{-iz}+e^{iz}\over2}\\ LHS=|\cos z|^2={1\over4}\left(e^{-2iz}+2e^{-iz+iz}+e^{2iz}\right)\\ \quad={1\over2}+{1\over4}\left[e^{-2i(x+iy)}+e^{2i(x+iy)}\right]\\ \quad=\color{red}{{1\over4}\left(2+e^{2y}+e^{-2y}\right)+{1\over4}\left(e^{-i2x}+e^{i2x}\right)}\\ RHS=\cos^2x+\sinh^2y\\ \quad={1\over4}\left(e^{-i2x}+e^{i2x}+2\right)-{1\over4}\left(e^{2y}-2+e^{-2y}\right)\\ }\] They do not seem to match!!
have idea ???
yes. you can prove it thus way: 1) get LHS = "a" 2) if you can show RHS = "a", then LHS=RHS="a" and QED. but following this, the two sides probably have an issue with the "signs"
no wait.. my bad.. I took "sin y" instead of "sinh y" \[\Large{ \cos z={e^{-iz}+e^{iz}\over2}\\ LHS=|\cos z|^2={1\over4}\left(e^{-2iz}+2e^{-iz+iz}+e^{2iz}\right)\\ \quad={1\over2}+{1\over4}\left[e^{-2i(x+iy)}+e^{2i(x+iy)}\right]\\ \quad=\color{red}{{1\over4}\left(2+e^{2y}+e^{-2y}\right)+{1\over4}\left(e^{-i2x}+e^{i2x}\right)}\\ RHS=\cos^2x+\sinh^2y\\ \quad={1\over4}\left(e^{-i2x}+e^{i2x}+2\right)+{1\over4}\left(e^{2y}-2+e^{-2y}\right)\\ \quad=\color{red}{{1\over4}\left(e^{2y}+e^{-2y}\right)+{1\over4}\left(e^{-i2x}+e^{i2x}\right)}\\ {\rm SO,}\\ \color{green}{\boxed{|\cos z|^2={1\over2}+\cos^2x+\sinh^2y}} }\]
but it's not the answer
as you see, the LHS and the RHS differ by \(1\over2\).
yes., i see, did you know why ???

Not the answer you are looking for?

Search for more explanations.

Ask your own question