anonymous
  • anonymous
anyone can? Find the Taylor series expansion of a function of f(z)=z exp(2z) about z = -1 and find the region of convergence.,
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
have idea @CanadianAsian ???
anonymous
  • anonymous
Gimme a second, I'm not that great at using the equation pad.
anonymous
  • anonymous
The Taylor summation of e^x is as follows \[e ^{x} = \Sigma \frac{ x^n }{ n! }\] So then you let x = 2z to get \[\sum_{0}^{\infty}\frac{ (2z)^n }{ n! }\] Which can be split up as follows \[\sum_{0}^{\infty}\frac{ 2^n*z^n }{ n! }\] And then we multiply this by z to get \[\sum_{0}^{\infty}\frac{2^n*z ^{n+1} }{ n! }\] and then the last step is to put the summation around z = -1, which makes the summation look as follows \[\sum_{0}^{\infty}\frac{2^n*(z + 1) ^{n+1} }{ n! }\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
To find the radius of convergence you use the equation \[\left| \frac{ f(x)_{n+1} }{ f(x)_{n} } \right| < 1\] where f(x) is everything inside the summation from the previous part
anonymous
  • anonymous
ah ok.., and then?
anonymous
  • anonymous
so you find what the absolute value of x is and that's your radius of convergence
anonymous
  • anonymous
is it |z-1| < 0 ???
anonymous
  • anonymous
sorry, it's R = f(x) of n / f(x) of n+1
anonymous
  • anonymous
i dont understand first one, why u multiplied by z ??
anonymous
  • anonymous
@gerryliyana we multiply through by \(z\) because our function is \(z\exp(2z)\) not just \(\exp(2z)\) :-)
anonymous
  • anonymous
ah yea
anonymous
  • anonymous
We started with something we knew was true by definition, that \(\exp(z)\) has the following (Taylor) power series:$$\exp(z)=\sum\frac1{n!}z^n$$... just like its real analog. Now, since our function has \(\exp(2z)\), we merely substitute for \(z\) as follows.$$\exp(2z)=\sum\frac1{n!}(2z)^n=\sum\frac{2^n}{n!}z^n$$We're almost there. Recall that since our desired function is \(z\exp(2z)\), we merely need to multiply both sides by \(z\) (wow... power series are neat :-)$$z\exp(2z)=\sum \frac{2^n}{n!}z^{n+1}$$
anonymous
  • anonymous
Now, for determining the radius of convergence for our series, why not try something like the ratio test?$$C=\lim_{n\to\infty}\left|\frac{2^{n+1}/(n+1)!\,z^{n+2}}{2^n/n!\,z^{n+1}}\right|=\lim_{n\to\infty}\left|\frac{2z}{n+1}\right|=\lim_{n\to\infty}\frac2{n+1}|z|=0<1$$... thus we converge for any \(z\) and our radius of convergence is \(\infty\).
anonymous
  • anonymous
is it region of convergence??
anonymous
  • anonymous
@oldrin.bataku
anonymous
  • anonymous
@gerryliyana the region of convergence is all of \(\mathbb{C}\).
anonymous
  • anonymous
@oldrin.bataku how about z = -1?? the Taylor series expansion of a function of f(z)=z exp(2z) about z = -1, is that already fulfilled??
anonymous
  • anonymous
let me try., \[\lim_{n \rightarrow \infty} \left| \frac{ (2^{n+1}/(n+1)!)(z+1)^{n+2} }{ (2^{n}/(n)!)(z+1)^{n+1} } \right|=\lim_{n \rightarrow \infty} \left| \frac{ 2(z+1) }{ n+1 } \right|=\lim_{n \rightarrow \infty} \left| \frac{ 2 }{ n+1 } \right| \left| z+1 \right| = 0 < 1\] then the region convergence is |z+1|<1
anonymous
  • anonymous
@gerryliyana it is not \((z+1)^{n+2}\) but merely \(z^{n+2}\), and you'll notice that \(\frac2{n+1}\to0\) regardless of \(z\).
anonymous
  • anonymous
@oldrin.bataku then the region of convergence is \(|z+1| < \infty \) ???
anonymous
  • anonymous
@gerryliyana oops I forgot to make it centered at \(z=-1\) :o

Looking for something else?

Not the answer you are looking for? Search for more explanations.