anonymous
  • anonymous
Partial Differential Problem
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
what's your question ?
anonymous
  • anonymous
Assume from electricity the equations \(\nabla . \bar D = \rho \) (\(\bar D \) = electric displacement ) and \(\rho \) = charge density and \(\bar D = - \epsilon \nabla \phi \), \(\phi \) = electrostatic potential and \(\epsilon\) = dielectric constant. Show that the electric potential satisfies laplace's equations in a charge -free region and satisfies poisson's equation in a region of charge density \(\rho\).
anonymous
  • anonymous
i typed, have idea, @rox13kh ???

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
hei where are you going @rox13kh ??
anonymous
  • anonymous
@UnkleRhaukus @oldrin.bataku have idea ??
anonymous
  • anonymous
in a charge-free region \(\rho=0\) and u have\[\nabla . \bar D = \rho=0\]and we know \(\bar D = - \epsilon \nabla \phi\) so\[\nabla . (- \epsilon \nabla \phi)=0\]\[\nabla . ( \nabla \phi)=0\]\[\nabla^2 \phi=0 \ \ \ \ \color\red{\text{Laplace Equation}}\]
anonymous
  • anonymous
in a similar process\[\nabla . (- \epsilon \nabla \phi)=\rho\] in a region of charge density \(\rho\) . if \(\epsilon\) is constant\[-\epsilon \ \nabla^2 \phi=\rho \ \ \ \ \color\Green{\text{ Poisson's Equation}}\]
anonymous
  • anonymous
ah thank you @mukushla ..., i have another one .., wanna help me again?

Looking for something else?

Not the answer you are looking for? Search for more explanations.