anonymous
  • anonymous
Assume from electricity the following equations which are valid in free space. (They are called Maxwell equations)
Linear Algebra
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\(\nabla . \bar E = 0 \) \(\nabla . \bar H = 0 \) \(\nabla \times \bar E=-\mu (\frac{ \delta \bar H }{ \delta t }\)) \(\nabla \times \bar E=-\epsilon (\frac{ \delta \bar E }{ \delta t }\)) from them show that any component of \(\ \bar E\) or \(\ \bar H \) satisfies the wave equation with \(\ v = (\epsilon \mu )^{-1/2}\). Hint: use vector identity!
anonymous
  • anonymous
have idea @CarlosGP ????
anonymous
  • anonymous
Yes. I have. You should start by correcting the fourth equation. The right one is: \[\nabla \times H=\epsilon \frac{ \delta E }{ \delta t } \] How to obtain the wave equation from this particular case of Maxwell equations, can be found in any book of Electromagnetism

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@CarlosGP and then what should i do ??
anonymous
  • anonymous
Where are you getting these \[\frac{ \delta^{2} E }{ \delta^{2}t } = - \omega ^{2} E_{s} \] ????
anonymous
  • anonymous
then for Ey \[E_{ys} = E_{ys} (x) \rightarrow \frac{ \delta^{2}E_{ys} (x) }{ \delta z^{2} } =0 ; \frac{ \delta^{2}E_{ys}(x) }{ \delta y^{2} }=0 \] \[\frac{ \delta^{2}E_{ys} (x) }{ \delta x^{2} } + \left( \frac{ \omega }{ v } \right)^{2} E_{ys} = 0\] and for z \[E_{zs} = E_{zs} (x) \rightarrow \frac{ \delta^{2} E_{zs}(x) }{ \delta z^{2} }=0 ; \frac{ \delta^{2}E_{zs}(x) }{ \delta y^{2} }=0\] \[\frac{ \delta^{2} E_{zs} (x) }{ \delta x^{2} } + \left( \frac{ \omega }{ v } \right)^{2} E_{zs} =0\] correct me if i wrong.., :)
anonymous
  • anonymous
Hi @BAdhi
BAdhi
  • BAdhi
we assume that E field is time harmonic, i.e. $$E=E_0e^{j\omega t}\implies \frac{d^2E}{dt^2}=-\omega^2E_0e^{j\omega t}=-\omega^2E$$
anonymous
  • anonymous
cool @BAdhi ..., then.., what's the next? would you like to check my work above before you?
anonymous
  • anonymous
hi @Jonask nice to meet you :)
anonymous
  • anonymous
nice to meet you too are you taking electrıcty wıth edx
anonymous
  • anonymous
no i'm not.., i'm taking 2.01x Elements of Structures
anonymous
  • anonymous
@Jonask , would you like to check my work above??
anonymous
  • anonymous
not famılıar wıth these sorry
perl
  • perl
whats elements of structures?

Looking for something else?

Not the answer you are looking for? Search for more explanations.