DLS
  • DLS
Matrix help!
Pre-Algebra
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

DLS
  • DLS
\[If~A=\left[\begin{matrix}\alpha & 0 \\ 1 & 1\end{matrix}\right] \] \[\And~B=\left[\begin{matrix}1 & 5 \\ 0 & 1\end{matrix}\right]\] such that \[A^2=B\] Then \[\alpha=?\]
DLS
  • DLS
Options: A)1 B)-1 C)4 D)None of these
DLS
  • DLS
\[\LARGE \left[\begin{matrix}\alpha^2 & 0 \\ \alpha+1& 1\end{matrix}\right]=\left[\begin{matrix}1 & 0 \\ 5 & 1\end{matrix}\right]\] I am getting this after equating A^2=B I am getting all the 3 options A,B,C. But it is a single choice question.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

DLS
  • DLS
@yrelhan4
DLS
  • DLS
@agent0smith @dmezzullo @electrokid
phi
  • phi
the lower left entry should be in B is 0. so you have a^2 =1 and a+1=0
DLS
  • DLS
no..
phi
  • phi
are you sure about the B matrix? A*A is [ a^2 0 ] [ a+1 1 ] which cannot match B as given
DLS
  • DLS
yes i checked twice
phi
  • phi
which version of B is the one given? the original or the one you posted later?
agent0smith
  • agent0smith
\[~B=\left[\begin{matrix}1 & 5 \\ 0 & 1\end{matrix}\right] \] \[\LARGE \left[\begin{matrix}\alpha^2 & 0 \\ \alpha+1& 1\end{matrix}\right]=\left[\begin{matrix}1 & 0 \\ 5 & 1\end{matrix}\right]\] which is B...
DLS
  • DLS
later one sorry
agent0smith
  • agent0smith
so alpha^2 = 1 and alpha+1 = 5...??? that doesn't seem to work :/
phi
  • phi
as you noticed, there is no unique solution for alpha...
DLS
  • DLS
A,B,C all 3 are correct but single choice .-.
agent0smith
  • agent0smith
If you're sure that second matrix is right, then there's no solution. The first matrix would give alpha is -1.
phi
  • phi
I think you should choose option D
DLS
  • DLS
yes it is right :| the solution says none of these since this is an absurd case :O

Looking for something else?

Not the answer you are looking for? Search for more explanations.