UnkleRhaukus 2 years ago .

1. UnkleRhaukus

\newcommand % new commands % parameters % \p \newcommand \p \q \renewcommand \p \eo { \varepsilon_{o}^{} } % electric constant \p \mo { \mu_0^{} } % magnetic constant \p \co { c_0^{} } % speed of light in vacuum \p \E { \mathcal E } % electromotive force \p \eell { \boldsymbol{ \ell} } % length vector \p \mx { _\text{max} } % maximum value \p \fr { _\text{free} } % maximum value \p \ind { _\text{ind} } % induced \p \enc { _\text{enc} } % enclosed \p \pn { _\text{pen} } % penetrating \p \os { _\text{open surface} } % open surface \p \cs { _\text{closed surface}} % closed surface \p \ol { _\text{open loop} } % open loop \p \cl { _\text{closed loop} } % closed loop \p \ve [1] { \vec{\boldsymbol{#1} } } % vector \p \uv [1] { \hat{\mathbf #1} } % unit vector \p \dd [1] { \,\mathrm d#1 } % infinitesimal \p \intl [4] { \int\limits_{#1}^{#2}{#3}{\dd #4} } % integral ∫_a^b{f(x)} dx \p \de [2] { \frac{ \mathrm d #1}{\mathrm d#2} } % first order derivative \begin{align} % table % &\boxed{ \oint\limits\cs\hspace{-1.5em}\ve E\cdot\dd\ve A = \frac{\sum Q\enc}\eo } &\text{Gauss's law} \\ &\boxed{ \oint\limits\cl\hspace{-1em}\ve B\cdot\dd\ve \eell = \mo I\pn } &\text{Ampè}\grave{\text e}\text{re's circuital law} \\ &\boxed{ \oint\limits\cs\hspace{-1.5em}\ve B\cdot\dd\ve A = 0 } &\text{Gauss's law for magnetism} \\ &\boxed{ \oint\limits\cl\hspace{-1em}\ve E\cdot\dd\ve \eell = -\de{}t\hspace{-1em}\int\limits\os\hspace{-1.5em}\ve B\cdot\dd\ve A} &\text{Faraday's law ofa induction} \end{align}

2. UnkleRhaukus

[\newcommand % new commands % parameters % \p \newcommand \p \q \renewcommand \p \eo { \varepsilon_{o}^{} } % electric constant \p \mo { \mu_0^{} } % magnetic constant \p \co { c_0^{} } % speed of light in vacuum \p \E { \mathcal E } % electromotive force \p \mx { _\text{max} } % maximum value \p \fr { _\text{free} } % maximum value \p \enc { _\text{enc} } % enclosed \p \pn { _\text{pen} } % penetrating \p \os { _\text{open surface} } % open surface \p \cs { _\text{closed surface}} % closed surface \p \ol { _\text{open loop} } % open loop \p \cl { _\text{closed loop} } % closed loop \p \ve [1] { \vec{\boldsymbol{#1} } } % vector \p \dd [1] { \,\mathrm d#1 } % infinitesimal \p \de [2] { \frac{ \mathrm d #1}{\mathrm d#2} } % first order derivative \begin{align} % table % &\boxed{ \oint\limits\cs\hspace{-1.5em}\ve E\cdot\dd\ve A = \frac{\sum Q\enc}\eo }&\text{Gauss's law} \\ &\boxed{ \oint\limits\cl\hspace{-1em}\ve B\cdot\dd\ve \ell = \mo I\pn }&\text{Ampere's circuital law} \\ &\boxed{ \oint\limits\cs\hspace{-1.5em}\ve B\cdot\dd\ve A = 0 } &\text{Gauss's law for magnetism} \\ &\boxed{ \oint\limits\cl\hspace{-1em}\ve E\cdot\dd\ve \ell = -\de{}t\hspace{-1em}\int\limits\os\hspace{-1.5em}\ve B\cdot\dd\ve A} &\text{Faraday's law of induction} \end{align}\]

3. UnkleRhaukus

$\href{ http://animals.nationalgeographic.com/animals/mammals/spider-monkey }{Monkey}$

4. UnkleRhaukus

$\href{http://stack\_overflow.com/\~foo\%20bar\#link}{here}$

5. UnkleRhaukus

$\href{ http://animals.nationalgeographic.com/animals/mammals/spider-monkey \#link}{Monkey}$

6. UnkleRhaukus

$\href{ http://animals.nationalgeographic.com/animals/mammals/spider-monkey#link }{Monkey}$