anonymous
  • anonymous
Problem . Solve the semi-infinite plate problem if the bottom edge of width \(\ \pi\) is held at T=\(\\cos x \), and the other sides are at 0o
Statistics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Solve the semi-infinite plate problem if the bottom edge of width \(\ \pi\) is held at T=\(\\cos x \), and the other sides are at 0o
anonymous
  • anonymous
this is the same problem gerryliyana, good practice for u :)
anonymous
  • anonymous
ok.., i'll try :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
the only thing has been changed is boundary condition of bottom edge and length of wall
anonymous
  • anonymous
Ok.., ok, i've tried. and i got \[T (x,0) \sum_{n=1}^{\infty} a_{n} \sin (nx)\] then into fourier form: \[a_{n} \frac{ 2 }{ l } \int\limits_{0}^{l} f(x,0) \sin (nx) dx\] because of T = f(x,0)= cos x for y =0; then \[a_{n} = \frac{ 2 }{ \pi } \int\limits_{0}^{\pi} \cos x . \sin (nx) dx\] how to solve \(a_{n} = \frac{ 2 }{ \pi } \int\limits_{0}^{\pi} \cos x . \sin (nx) dx\) ?? Would you kinly help me guys ??
anonymous
  • anonymous
@ajprincess @.Sam. @ganeshie8 @jim_thompson5910 would you kinly help me ??
anonymous
  • anonymous
@kropot72

Looking for something else?

Not the answer you are looking for? Search for more explanations.