anonymous
  • anonymous
Find the solution of gamma and beta function!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Find the solution of gamma and beta function for \[\int\limits_{0}^{\pi/2} \frac{ d \theta }{ \sqrt{\sin \theta} }\]
anonymous
  • anonymous
@ajprincess @amistre64 @BAdhi
amistre64
  • amistre64
i dont have enough experience with beta and gamma

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

BAdhi
  • BAdhi
me neither :(
ajprincess
  • ajprincess
I am sorry @gerryliyana I havnt learnt this.:(
anonymous
  • anonymous
I don't understand your original question, but this is an elliptic integral.
abb0t
  • abb0t
If the root wasn't there I would have an idea but it's making it a problem with it there.
anonymous
  • anonymous
@gerryliyana can you state more clearly what you wish to do?
abb0t
  • abb0t
Isn't it \[\frac{ \Gamma (m) }{ 2 \times \Gamma (m) }\]
abb0t
  • abb0t
For your beta
anonymous
  • anonymous
ok ok...,for eample i have \[\int\limits_{0}^{\pi/2} \frac{ d \theta }{ \sqrt{\sin \theta} } \] based on Beta function; \[B(p,q) = 2 \int\limits_{0}^{\pi/2} (\sin \theta)^{2p-1} (\cos \theta)^{2q-1} d \theta \] then, i have \[\int\limits_{0}^{\pi/2} \frac{ d \theta }{ \sqrt{\sin \theta} } \] \[\int\limits_{0}^{\pi/2} (\sin \theta)^{-1/2} (\cos \theta)^{0} d \theta\] \[\int\limits\limits_{0}^{\pi/2} (\sin \theta)^{2 (1/4)-1} (\cos \theta)^{2 (1/2)-1} d \theta \] then i have \[B(p,q)=2 \int\limits\limits\limits_{0}^{\pi/2} (\sin \theta)^{2 (1/4)-1} (\cos \theta)^{2 (1/2)-1} d \theta \] \[\int\limits\limits\limits_{0}^{\pi/2} (\sin \theta)^{2 (1/4)-1} (\cos \theta)^{2 (1/2)-1} d \theta = \frac{ 1 }{ 2 } B(p,q)\] with p = 1/4 and q = 1/2; then (relation Beta and gamma) \[B(p,q) = \frac{ \Gamma (p) \Gamma (q) }{ \Gamma (p+q) }\] \[B(p,q) = \frac{ \Gamma (1/4) \Gamma (1/2) }{ \Gamma (1/4+1/2) }\] then i have \[\int\limits\limits\limits_{0}^{\pi/2} (\sin \theta)^{2 (1/4)-1} (\cos \theta)^{2 (1/2)-1} d \theta = \frac{ 1 }{ 2 } B(p,q)\] \[\int\limits\limits\limits\limits_{0}^{\pi/2} (\sin \theta)^{2 (1/4)-1} (\cos \theta)^{2 (1/2)-1} d \theta = \frac{ 1 }{ 2 } \frac{ \Gamma(1/4)\Gamma (1/2) }{ \Gamma (1/4+1/2 )}\] finally The solution of gamma and Beta function for \(\int\limits_{0}^{\pi/2} \frac{ d \theta }{ \sqrt{\sin \theta} } \) is \[\frac{ 1 }{ 2 } \frac{ \Gamma (1/4) \Gamma (1/2)}{ \Gamma (\frac{ 1 }{ 4 }+\frac{ 1 }{ 2 }) }\]
anonymous
  • anonymous
Oh... okay. You didn't clarify that's what you wanted.
anonymous
  • anonymous
Ok guys actually, i wanna check my work.., hei how about these "find the solution of gamma and beta function for \[\int\limits_{0}^{\pi/2} (\tan^{3}\theta + \tan^{5} \theta) e^{-\tan^{2}\theta} d \theta\]
anonymous
  • anonymous
let \(u=\tan^2 \theta\) see what happens, have u tried it yet?
anonymous
  • anonymous
yes., i've tried for this one, but it didn't work, oh my bad :(
anonymous
  • anonymous
it becomes\[\frac{1}{2}\int_{0}^{\infty} u e^{-u} du\]right?
anonymous
  • anonymous
wait a sec..,
anonymous
  • anonymous
then, \[\frac{ 1 }{ 2 } \int\limits_{0}^{\infty} ue^{-u} du = \frac{ 1 }{ 2 } \int\limits_{0}^{\infty} u^{2-1} e^{-u} du\] then p=2
anonymous
  • anonymous
\[= \frac{ 1 }{ 2 } \Gamma(2)\]
anonymous
  • anonymous
and u know that\[\Gamma(n+1)=n!\]we are done :)
anonymous
  • anonymous
ah yeah.., thank you so much @mukushla and other woow we are done :)
anonymous
  • anonymous
very welcome :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.